2,018 research outputs found

    Propagating and evanescent waves in absorbing media

    Full text link
    We compare the behavior of propagating and evanescent light waves in absorbing media with that of electrons in the presence of inelastic scattering. The imaginary part of the dielectric constant results primarily in an exponential decay of a propagating wave, but a phase shift for an evanescent wave. We then describe how the scattering of quantum particles out of a particular coherent channel can be modeled by introducing an imaginary part to the potential in analogy with the optical case. The imaginary part of the potential causes additional scattering which can dominate and actually prevent absorption of the wave for large enough values of the imaginary part. We also discuss the problem of maximizing the absorption of a wave and point out that the existence of a bound state greatly aids absorption. We illustrate this point by considering the absorption of light at the surface of a metal.Comment: Brief Review, to appear in the American Journal of Physics, http://www.kzoo.edu/ajp

    Complete controllability of quantum systems

    Get PDF
    Sufficient conditions for complete controllability of NN-level quantum systems subject to a single control pulse that addresses multiple allowed transitions concurrently are established. The results are applied in particular to Morse and harmonic-oscillator systems, as well as some systems with degenerate energy levels. Morse and harmonic oscillators serve as models for molecular bonds, and the standard control approach of using a sequence of frequency-selective pulses to address a single transition at a time is either not applicable or only of limited utility for such systems.Comment: 8 pages, expanded and revised versio

    Sub-wavelength imaging at optical frequencies using canalization regime

    Full text link
    Imaging with sub-wavelength resolution using a lens formed by periodic metal-dielectric layered structure is demonstrated. The lens operates in canalization regime as a transmission device and it does not involve negative refraction and amplification of evanescent modes. The thickness of the lens have to be an integer number of half-wavelengths and can be made as large as required for ceratin applications, in contrast to the other sub-wavelength lenses formed by metallic slabs which have to be much smaller than the wavelength. Resolution of λ/20\lambda/20 at 600 nm wavelength is confirmed by numerical simulation for a 300 nm thick structure formed by a periodic stack of 10 nm layers of glass with ϵ=2\epsilon=2 and 5 nm layers of metal-dielectric composite with ϵ=1\epsilon=-1. Resolution of λ/60\lambda/60 is predicted for a structure with same thickness, period and operating frequency, but formed by 7.76 nm layers of silicon with ϵ=15\epsilon=15 and 7.24 nm layers of silver with ϵ=14\epsilon=-14.Comment: 4 pages, 4 figures, submitted to PR

    Reliability Testing of AlGaN/GaN HEMTs Under Multiple Stressors

    Get PDF
    We performed an experiment on AlGaN/GaN HEMTs with high voltage and high power as stressors. We found that devices tested under high power generally degraded more than those tested under high voltage. In particular, the high-voltage-tested devices did not degrade significantly as suggested by some papers in the literature. The same papers in the literature also suggest that high voltages cause cracks and pits. However, the high-voltage-tested devices in this study do not exhibit cracks or pits in TEM images, while the high-power-tested devices exhibit pits

    Plasmon polaritons in photonic superlattices containing a left-handed material

    Get PDF
    We analyze one-dimensional photonic superlattices which alternate layers of air and a left-handed material. We assume Drude-type dispersive responses for the dielectric permittivity and magnetic permeability of the left-handed material. Maxwell's equations and the transfer-matrix technique are used to derive the dispersion relation for the propagation of obliquely incident optical fields. The photonic dispersion indicates that the growth-direction component of the electric (or magnetic) field leads to the propagation of electric (or magnetic) plasmon polaritons, for either TE or TM configurations. Furthermore, we show that if the plasma frequency is chosen within the photonic =0=0 zeroth-order bandgap, the coupling of light with plasmons weakens considerably. As light propagation is forbidden in that particular frequency region, the plasmon-polariton mode reduces to a pure plasmon mode.Comment: 4 pages, 4 figure

    A Superlens Based on Metal-Dielectric Composites

    Full text link
    Pure noble metals are typically considered to be the materials of choice for a near-field superlens that allows subwavelength resolution by recovering both propagating and evanescent waves. However, a superlens based on bulk metal can operate only at a single frequency for a given dielectric host. In this Letter, it is shown that a composite metal-dielectric film, with an appropriate metal filling factor, can operate at practically any desired wavelength in the visible and near-infrared ranges. Theoretical analysis and simulations verify the feasibility of the proposed lens.Comment: 15 pages, 4 figure

    Limitations on Sub-Diffraction Imaging with a Negative Refractive Index Slab

    Full text link
    Recently it has been proposed that a planar slab of material, for which both the permittivity and permeability have the values of -1, could bring not only the propagating fields associated with a source to a focus, but could also refocus the nonpropagating near-fields, thereby achieving a subdiffraction image. In this work we discuss the sensitivity of the subwavelength focus to various slab parameters, pointing out the connection to slab plasmon modes. We also note and resolve a paradox associated with the perfect imaging of a point source. We conclude that subwavelength resolution is achievable with available technology, but only by implementation of a critical set of design parameters.Comment: pdf fil

    Constructive control of quantum systems using factorization of unitary operators

    Get PDF
    We demonstrate how structured decompositions of unitary operators can be employed to derive control schemes for finite-level quantum systems that require only sequences of simple control pulses such as square wave pulses with finite rise and decay times or Gaussian wavepackets. To illustrate the technique it is applied to find control schemes to achieve population transfers for pure-state systems, complete inversions of the ensemble populations for mixed-state systems, create arbitrary superposition states and optimize the ensemble average of dynamic observables.Comment: 28 pages, IoP LaTeX, principal author has moved to Cambridge University ([email protected]
    corecore