278 research outputs found

    A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    Get PDF
    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included

    Studies on the Interference of Wings and Propeller Slipstreams

    Get PDF
    The small disturbance potential flow theory is applied to determine the lift of an airfoil in a nonuniform parallel stream. The given stream is replaced by an equivalent stream with a certain number of velocity discontinuities, and the influence of these discontinuities is obtained by the method of images. Next, this method is extended to the problem of an airfoil in a nonuniform stream of smooth velocity profile. This model allows perturbation velocity potential in a rotational undisturbed stream. A comparison of these results with numerical solutions of Euler equations indicates that, although approximate, the present method provides useful information about the interaction problem while avoiding the need to solve the Euler equations. The assumptions of the classical lifting line theory applied to the wing-slipstream interaction problem are scrutinized. One of the assumptions (uniform velocity in the slipstream) of the classical theory is dropped, and the governing equations are derived for the spanwise lift distribution on a wing in a single axisymmetric slipstream. Spanwise lift and induced drag distributions are obtained for two typical cases, and the effects of nonuniformity in the slipstream velocity profile are examined

    Visual Representations of the Water Cycle in Science Textbooks

    Get PDF
    Visual representations, including photographs, sketches and schematic diagrams, are a valuable yet often neglected aspect of textbooks. Visual means of communication are particularly helpful in introducing abstract concepts in science. For effective communication, visuals and text need to be appropriately integrated within the textboo

    Computational method to predict thermodynamic, transport, and flow properties for the modified Langley 8-foot high-temperature tunnel

    Get PDF
    The Langley 8 foot high temperature tunnel (8 ft HTT) is used to test components of hypersonic vehicles for aerothermal loads definition and structural component verification. The test medium of the 8 ft HTT is obtained by burning a mixture of methane and air under high pressure; the combustion products are expanded through an axisymmetric conical contoured nozzle to simulate atmospheric flight at Mach 7. This facility was modified to raise the oxygen content of the test medium to match that of air and to include Mach 4 and Mach 5 capabilities. These modifications will facilitate the testing of hypersonic air breathing propulsion systems for a wide range of flight conditions. A computational method to predict the thermodynamic, transport, and flow properties of the equilibrium chemically reacting oxygen enriched methane-air combustion products was implemented in a computer code. This code calculates the fuel, air, and oxygen mass flow rates and test section flow properties for Mach 7, 5, and 4 nozzle configurations for given combustor and mixer conditions. Salient features of the 8 ft HTT are described, and some of the predicted tunnel operational characteristics are presented in the carpet plots to assist users in preparing test plans

    Finite-rate water condensation in combustion-heated wind tunnels

    Get PDF
    A quasi-one-dimensional method for computing finite rate nucleation and droplet growth of water in a supersonic expansion of combustion products is presented. Sample computations are included for the Langley 8 foot High Temperature Tunnel, but the method can also be applied to other combustion heated wind tunnels. The sample results indicate that the free stream static pressure can be in the range of 25 to 60 percent greater than that computed for isentropic nozzle flow without water condensation. The method provides a tool for examining the effects of water condensation on static state properties and velocity of the supersonic stream in combustion heated wind tunnels

    Computational Study of a McDonnell Douglas Single-Stage-to-Orbit Vehicle Concept for Aerodynamic Analysis

    Get PDF
    This paper presents the results of a computational flow analysis of the McDonnell Douglas single-stage-to-orbit vehicle concept designated as the 24U. This study was made to determine the aerodynamic characteristics of the vehicle with and without body flaps over an angle of attack range of 20-40 deg. Computations were made at a flight Mach number of 20 at 200,000 ft. altitude with equilibrium air, and a Mach number of 6 with CF4 gas. The software package FELISA (Finite Element Langley imperial College Sawansea Ames) was used for all the computations. The FELISA software consists of unstructured surface and volume grid generators, and inviscid flow solvers with (1) perfect gas option for subsonic, transonic, and low supersonic speeds, and (2) perfect gas, equilibrium air, and CF4 options for hypersonic speeds. The hypersonic flow solvers with equilibrium air and CF4 options were used in the present studies. Results are compared with other computational results and hypersonic CF4 tunnel test data

    An implementation of a chemical and thermal nonequilibrium flow solver on unstructured meshes and application to blunt bodies

    Get PDF
    This paper presents a nonequilibrium flow solver, implementation of the algorithm on unstructured meshes, and application to hypersonic flow past blunt bodies. Air is modeled as a mixture of five chemical species, namely O2, N2, O, NO, and N, having two temperatures namely translational and vibrational. The solution algorithm is a cell centered, point implicit upwind scheme that employs Roe's flux difference splitting technique. Implementation of this algorithm on unstructured meshes is described. The computer code is applied to solve Mach 15 flow with and without a Type IV shock interference on a cylindrical body of 2.5mm radius representing a cowl lip. Adaptively generated meshes are employed, and the meshes are refined several times until the solution exhibits detailed flow features and surface pressure and heat flux distributions. Effects of a catalytic wall on surface heat flux distribution are studied. For the Mach 15 Type IV shock interference flow, present results showed a peak heat flux of 544 MW/m2 for a fully catalytic wall and 431 MW/m(exp 2) for a noncatalytic wall. Some of the results are compared with available computational data

    Drug utilization study of antihypertensive drugs and prevalence of blood pressure control in adult hypertensive patients based on JNC VIII guidelines in a tertiary care hospital: a cross sectional study

    Get PDF
    Background: Hypertension is a major independent risk factor for coronary artery disease, congestive heart failure, stroke, chronic kidney disease and peripheral vascular diseases if left untreated. Drug utilization study of antihypertensive drugs and the study on prevalence of blood pressure control would help in reducing the burden of the disease and health expenditure.Methods: The study was conducted in the Outpatient Department of Medicine in Government Medical College, Thrissur. Patients aged 18yrs or above diagnosed with hypertension, on antihypertensive drugs were enrolled in the study. Patients suffering from secondary hypertension and acutely ill were excluded. Patients were enrolled after taking an informed consent. Demographic data, present treatment for hypertension, associated co- morbid conditions if any, and treatment of the same were recorded. BP was recorded, and cost of treatment was calculated using CIMS.Results: A total of 250 patients were included in the study. Mono therapy was used in 64.8% patients and combination therapy in 35.2%. Overall drug utilization pattern showed that CCBs (42.8%) were most commonly prescribed, followed by ACEIs (32.4%) and ARBs (29.2%). Most commonly prescribed combination therapy was ACE I + BB (29.3%), followed by ARB + CCB (21.3%). Mean cost of antihypertensive drug therapy was 3057.8 Rs / yr. Recommended target BP was achieved in 49.6% of patients.Conclusions: The prescription pattern of antihypertensive drug was in accordance to the JNC-VIII guidelines. The blood pressure target was achieved only in less than 50% of patients

    Yang-Mills theory for bundle gerbes

    Full text link
    Given a bundle gerbe with connection on an oriented Riemannian manifold of dimension at least equal to 3, we formulate and study the associated Yang-Mills equations. When the Riemannian manifold is compact and oriented, we prove the existence of instanton solutions to the equations and also determine the moduli space of instantons, thus giving a complete analysis in this case. We also discuss duality in this context.Comment: Latex2e, 7 pages, some typos corrected, to appear in J. Phys. A: Math. and Ge

    Lipopolysaccharide Core Structures in \u3cem\u3eRhizobium etli\u3c/em\u3e and Mutants Deficient in \u3cem\u3eO\u3c/em\u3e-Antigen

    Get PDF
    Lipopolysaccharide (LPS) is a major component of the bacterial outer membrane, and for Rhizobium spp. has been shown to play a critical role in the establishment of an effective nitrogen-fixing symbiosis with a legume host. Many genes required for O-chain polysaccharide synthesis are in the lps α region of the CE3 genome; this region may also carry lps genes required for core oligosaccharide synthesis. The LPSs from several strains mutated in the α region were isolated, and their mild acid released oligosaccharides, purified by high performance anion-exchange chromatography, were characterized by electrospray- and fast atom bombardment-mass spectrometry, NMR, and methylation analysis. The LPSs from several mutants contained truncated O-chains, and the core region consisted of a (3-deoxy-D-manno-2-octulosomic acid) (Kdo)-(26)-α-Galp-(16)-[α-GalpA-(14)]-α-Manp-(15)-Kdop (3-deoxy-D-manno-2-octulosomic acid) (Kdo)pentasaccharide and a α-GalpA-(14)-[α-GalpA-(15)]-Kdop trisaccharide. The pentasaccharide was altered in two mutants in that it was missing either the terminal Kdo or the GalA residue. These results indicate that the lps α region, in addition to having the genes for O-chain synthesis, contains genes required for the transfer of these 2 residues to the core region. Also, the results show that an LPS with a complete core but lacking an O-chain polysaccharide is not sufficient for an effective symbiosis
    corecore