research

Finite-rate water condensation in combustion-heated wind tunnels

Abstract

A quasi-one-dimensional method for computing finite rate nucleation and droplet growth of water in a supersonic expansion of combustion products is presented. Sample computations are included for the Langley 8 foot High Temperature Tunnel, but the method can also be applied to other combustion heated wind tunnels. The sample results indicate that the free stream static pressure can be in the range of 25 to 60 percent greater than that computed for isentropic nozzle flow without water condensation. The method provides a tool for examining the effects of water condensation on static state properties and velocity of the supersonic stream in combustion heated wind tunnels

    Similar works