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Abstract

The Langley 8-Foot High-Temperature Tunnel

(8-ft HTT) is used to test components of hyper-
sonic vehicles for aerothermal loads definition and

structural component verification. The test medium

of the 8-ft HTT is obtained by burning a mixture

of methane-air under high pressure; the combus-

tion products are expanded through an axisymmet-
ric conical-contoured nozzle to simulate atmospheric

flight at Mach 7. This facility has been modi-
fied to raise the oxygen content of the test medium
to match that of air and to include Mach 4 and

Mach 5 capabilities. These modifications will facil-

itate the testing of hypersonic air-breathing propul-
sion systems for a wide range of flight conditions.

A computational method to predict the thermo-

dynamic, transport, and flow properties of the

equilibrium chemically reacting oxygen-enriched
methane-air combustion products has bccn imple-

mented in a computer code. This code calculates the

fuel, air, and oxygen mass flow rates and test sec-

tion flow properties for Mach 7, Mach 5, and Mach 4

nozzle configurations for given combustor and mixer
conditions. Salient features of the 8-ft HTT are de-

scribed, and some of the predicted tunnel operational

characteristics are presented in the carpet plots to as-

sist users in preparing test plans.

Introduction

The Langley 8-Foot High-Temperature _mnel

(8-ft HTT), which became operational in the 1960's,

primarily has been used to define thermal and struc-
tural loads on large models at hypersonic speeds.

Although many other hypersonic facilities were aban-

doned in the early 1970's, this tunnel is still opera-
tional and qualifies as a unique national facility. A

resurgent interest exists in thc development of air-

breathing hypersonic vehicles that can fly at hyper-

sonic speeds within the atmosphere. This interest
is evident from the current development program of

the National Aero-Space Plane (NASP), which is en-

visioned to be a hypersonic aircraft that can fly di-

rectly into orbit from a conventional runway (refs. 1

and 2).

To develop and improve advanced propulsion sys-

tems required for vehicles such as NASP, test fa-
cilities must simulate conditions that are encoun-

tered by the vehicle during its mission. Although

the high-temperature test medium of the methane-
air combustion products produced in the 8-ft HTT

does not have the oxygen content of air, it has been
useful for aerothermal loads definition and structural

component verification. However, engine testing re-

quires oxygen enrichment because most of the oxy-

gen available in the air is used in the combustion of
methane and the test medium cannot support fur-

ther combustion in the engine. The need for large-

engine test facilities to develop air-breathing engines

for hypersonic flight prompted the modification of
the 8-ft HTT. The modified facility can bc operated

in the oxygen-enriched combustion mode to produce

21 percent oxygen by volume in the test section or

in the no-oxygen-enriched mode. The addition of
Mach 4 and Mach 5 nozzle configurations will also

complement the existing Mach 7 capability.

Figure 1 illustrates the operational envelopes, in

terms of Maeh number and pressure altitude, for the

8-ft HTT and two other facilities (the Aero Propul-

sion Test Unit (APTU) and the Aero Propulsion

System Test Facility (ASTF) of the U.S. Air Force
Arnold Engineering Development Center (AEDC)).

Also superimposed around the facility operational

envelope is a typical air-breathing engine operational

cnvelope. The upper altitude limit is imposed by the

ability of the engine to sustain combustion, and the
lower altitude limit is imposed by the ability of the
structure to survive the aerothermal loads. The in-

clusion of Mach 4 and Mach 5 capabilities enhances

thc testing envelope of the 8-ft HTT in the turbo-

jet and ramjet operating rangcs. However, the lower
altitude limit of the facility with oxygen enrichment

is restricted because the LOX (liquid oxygen) tank

pressure limit is 2300 psia, which limits thc combus-

tor pressure to 2000 psia.

This report describes a computational method to

predict test section flow properties at the nominal
Maeh numbers of 7, 5, and 4 for the 8-ft HTT.

The flow is assumed to be in chemical equilibrium.
Salient features of the 8-ft HTT are discussed to make

the code requirements clear. The tunnel operational
characteristics are presented for both the methane-

air and methane-air-oxygen modes.

Symbols

A

a

Cp

Cp

FSA

g

nozzle throat cross-sectional area,

ft 2

acoustic velocity, ft/sec

molar heat capacity of species,

Btu/mole-°R

specific heat capacity of gaseous

mixture, Btu/lbm-°R

flow survey apparatus

acceleration due to gravity,

ft/see 2
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H

J

K

Kp,j

LOX

M

m

MW

_Pr

NRc

P

PTC

PTM

Q

q

0s

R

Rn

Rsp

S

8

T

TTC

TTM

V

2

sensible enthalpy of species,

Btu/mole

enthalpy of gaseous mixture,

Btu/lbm

mechanical equivalent of heat,

778.26 ft-lbf/Btu

thermal conductivity, Btu/
ft-sec-°R

equilibrium constant in terms

of partial pressures (eqs. (AT)

to (A12))

Boltzmann constant, Btu/
molecule-°R

liquid oxygen

Mach number

mass flow rate, lbm/sec

average molecular weight of
gaseous mixture, Ibm/mole, 1�or

Prandtl number

unit Reynolds number, ft -1

pressure, psia

combustor pressure, psia

mixer pressure, psia

heat of formation, Btu/mole

dynamic pressure, psi

stagnation point heat-transfer

rate, Btu/ft2-sec

universal gas constant,

1.9858 Btu/mole-°R

radius of spherically blunt body,
lft

specific gas constant for mixture,

R/MW, Btu/lbm-°R

entropy of species, Btu/mole-OR

entropy of gaseous mixture,

Btu/lbm-°R

temperature, °R

combustor temperature, °R

mixer temperature, °R

velocity, ft/sec

x

Y

z

7

A

#

P

o"

_rC, °'H, 60, CrN

Subscripts:

a

c

e

f

i

771

ox

r

8

t

u,d

1,2

Superscript:

!

Test Facility

proportion of oxygen in gaseous
mixture by volume

moles of oxygen per mole of fuel

moles of air per mole of fuel

ratio of specific heats

convergence criteria

Lennard-Jones force constant

viscosity of gaseous mixture,

Ibm/f t-see

collision diameter of molecule,

mass density of mixture, lbm/ft 3

mole number of mixture,

mole/lbm of mixture, E ai

moles of elements C, H, O, and N

per lbm of mixture, mole/lbm

collision integral

air

combustor air

effective

fuel

chemical species index; pre-

combustion species

chemical reaction index; post-

combustion species

mixer air

molecular oxygen

reference

sum of fuel, total air, and oxygen

total

upstream and downstream

sections of transpiration-cooled

nozzle (fig. 8)

locations shown in figure 8

computed value

General Description

A schematic of the 8-ft HTT is given in figure 2.

The tunnel is a large, hypersonic blowdown facility
that simulates true-temperature flight at altitudes

and Mach numbers shown in figure 1. The facility



obtainsits high-energytest mediumby burninga
mixtureof methaneand air underhigh pressure
in the combustor. The combustionproductsare
expandedto thetest streamMachnumberthrough
an axisymmetricconical-contourednozzlethat has
an exit diameterof 8 ft. The free-jetflowpasses
throughthetestchamberandentersa straight-tube
supersonicdiffuser.Theflow thenis pumpedby a
single-stageannularair ejectorinto a mixingtube
andexhaustedto theatmospherethrougha subsonic
diffuser.

A viewof thetunneltestsectionfromthenozzle
exitduringtheentryof amodelinto theteststream
is shownin figure3. Themodelis storedin a pod
beneaththe test streamto protect it from tunnel
start-uploads.Oncetheflowconditionsareestab-
lished,themodelis insertedinto the streamusing
a hydraulicallyactuatedelevator. Modelinsertion
time from the edgeof the test coreto the tunnel
centerlineisapproximately1sec.An arrayof quartz
lamps,locatedin thepod,is usedto radiantlyheat
themodels,if required,beforeandafterexposureof
the modelto thetest stream.A flowsurveyappa-
ratus(FSA),whichcanobtainmeasurementsof the
test sectionflowpropertiesandcansurveythe flow
at variousaxial locationsalongthe test section,is
shownin its stowedposition. This FSA is instru-
mentedwith atotal of 37probes,including13pitot,
11staticpressure,and13total-temperatureprobes.

The combustoroperatesat total temperatures
rangingfrom 2400°Rto 3600°R.For the Mach7
nozzleconfigurationwithnooxygenenrichment,the
free-streamdynamicpressurerangesfrom1.74psito
12.5psi,andthefree-streamunit Reynoldsnumber
rangesfrom0.3x 106perft to 2.2× 106per ft. The
maximumrun time of the tunnel is approximately
120sec,and it is primarily restrictedby the air
storagecapacityof a localbottle field that is the
commonsourcefor thecombustorandtheejector.

Figure1 showsthat the test conditionsfor the
Mach 7 nozzle configuration are at the lower end

of the scramjet range. To obtain test conditions

for lower Mach numbers and pressure altitudes, the

nozzle must be reconfigured. A dual-throat-mixer
concept similar to that used to convert the AEDC

Von Karman Gas Dynamics Facility from a Mach 10

tunnel to a Mach 4 true-temperature tunnel (ref. 3)

was employed to reduce the cost by utilizing the max-

imum portion of the existing facility. (Note that the
Mach 10 tunnel is not a true-temperature tunnel.)

However, in the present facility, gas dynamics rather

than mechanical means (ref. 3) are used to mix the
hot combustion products with air. A similar concept

has bccn used to provide increased capabilities for the

Langley Arc-Heated Scramjet Test Facility (ref. 4).

The actual Mach number for the Mach 7 nozzle

configuration varies from 5.8 to 7.3 (fig. i). This

Mach number variation is caused by the water con-

densation in the nozzle (ref. 5). Condensation is

found to be maximum at low temperatures and high

pressures and minimum at high temperatures and

low pressures. In the future, the combustor tem-

perature upper limit of 3600°R may be increased
to 4000°R with an improved thermal liner for the
combustor.

Oxygen Enrichment

The 8-ft HTT has been modified to include oxy-

gen enrichment for facilitating scramjet engine test-
ing. A schematic of the combustor, which shows the

injection location and path of the LOX along with the

fuel and air supply, is given in figure 4. High-pressure
air from the 6000 psi bottle field is introduced at

the upstream end of the combustor. The combus-

tot consists of a carbon steel outer pressure vessel

that is protected by a 316 Stainless-Steel outer liner
and a 201 Nickel inner liner. The supply air passes

downstream through the annulus between the pres-

sure vessel and stainless-steel liner, and then it turns

180 ° upstream in the annulus between the outer and
inner liners. The LOX enters the annulus between
the outer and inner liners near the end of the LOX

injection mixing ramp and mixes with the upstream

air before it exits the annulus. The flow once again

turns 180 ° and passes across the methane injectors

where the oxygen-enriched air mixes with methane
and burns. The combustion gas then flows through

the nozzle throat and expands into the test section.

Because the LOX run tank pressure is limited

to 2290 psia, the combustor pressure is limited to

2000 psia. Therefore, the facility that operates with

oxygen enrichment is limited to a maximum dynamic

pressure of approximately 1800 psf or minimum pres-
sure altitudes of about 60 000 ft at M = 4, 78 000 ft

atM=5, and 90 000 ft at M--7.

Air-Transpiration-Cooled Nozzle Throat

Prior to the facility modification, the nozzle

throat was air-film cooled to prevent it from over-

heating because of the high-temperature combustion

products. The water-cooled nozzle approach section,
the throat, and a portion of the nozzle expansion

section have been replaced with an air-transpiration-

cooled section (fig. 5). This section is approximately

7.2 ft long and has a maximum internal diameter of



36 in. and a throat diameterof 5.6 in. A platelet
concepthasbeenusedto fabricatethis sectionin
whichtheair passagesarephotoetchedonthinsheets
of varyingthicknessesand bondedtogether. This
air-transpiration-coolingapproachis expectedto re-
ducethecoolantair massflowrateby 50percentof
theamountthat waspreviouslyusedjust to air-film
coolthe throat. This reductionin thecoolantflow
shouldproducea larger,uniform-temperaturetest
sectioncore.Thecoolantflowsat theupstreamand
downstreamlocationsof thenozzlethroat arecon-
trolledsuchthat theyareproportionalto thecom-
bustorpressure.However,theoptimumvaluesof the
coolantflowswill be determinedexperimentallyso
that theboundarylayerdoesnotseparatefromthe
nozzlewall but coolsthe nozzleeffectively.Refer-
ence6givesmoreinformationconcerningthedesign
detailsof theair-transpiration-cooledsection.

Alternate Mach Number
Schematicsof thenozzlemodificationsto include

Mach4 andMach5 capabilitiesareshownin fig-
urc 6. As explainedin thesectionentitled"General
Description,"a dual-throat-mixerconcepthasbeen
selectedto precludemodificationsto the combustor
andmaintainthe8-ftnozzleexitdiameterforMach4
or Mach5 operation.FortheseMachnumbers,the
removablesectionof the Math 7 nozzleis replaced
with a mixerandthe Mach4 or Mach5 nozzlein-
sertthat joins the 18.4-ft-longfixednozzlesection
asshownin figure6. Air at ambienttemperature
is injectedat variouslocationsof the mixerto de-
creasethe temperatureandmomentumof the hot
gasandincreasethemassflux in themixer.Thegas
thenwillbecxpamtedthroughtheMach4orMach5
nozzleto simulatethetrue temperatureof flightat
realisticaltitudes.Thegastemperaturein themixer
is 1640°Rand 2350°Rfor theMach4 andMach5
configurations, respectively.

Flow Computational Method

General Description of Code

The computational sequence of tile computer code
to calculate the thermodynamic, transport, and flow

properties for the 8-ft HTT is described in the flow-

chart in figure 7. This code, called HTT, calculates
the test stream flow properties and the mass flow

rates of fuel, air, and oxygen at various locations of

the 8-ft HTT for the Mach 7, Mach 5, and Mach 4

nozzle configurations (fig. 8). These mass flow rates

will be monitored and controlled during the tunnel

operation.

The combustion products are assumed to be in

chemical equilibrium and to be composed of 4 cte-

4

ments (C, H, O, and N) and 10 reacting species (H20,
CO2, CO, 02, H2, N2, H, O, OH, and NO) which

obey the perfect gas law. First, the proportions of

fuel, air, and oxygen are determined using an iter-
ative procedure such that the combustion products

attain the specified percentage of oxygen by volume

and temperature at a given pressure. Note that the

methane-air mode is calculated by setting the oxy-

gen volume to the amount contained in air. Calcu-
lating the temperature of the combustion products

at a specified pressure requires the mole numbers

aC, all, ao, and a N of tile gas supply. These mole
numbers are used to determine the chemical com-

position by solving a set of simultaneous equations

which represent the chemical reaction and elemen-

tal mass balance. The thermodynamic properties of

the mixture are then computed using thermodynamic
equations and chemical tables. The temperature of

the combustion products is calculated assuming that

the enthalpy of postcombustion and precombustion

products is constant for a given combustor condition.
The proportion of the gas supply is adjusted until the

calculated temperature converges with the specified

temperature. The actual quantities of fuel, air, and

oxygen are then calculated.

Next, the test stream flow properties are com-

puted using either the FSA data or isentropic ex-
pansion procedure. In the first method, the values

of test stream static pressure Pl and pitot pressures

Pt,2 are obtained from the FSA data. These values
are used in the governing equations to obtain all the

other flow properties. The flow properties for the

Mach 7 nozzle configuration are computed using the

FSA data, which are available from measurements
obtained prior to the tunnel modification. Calcu-

lations for the Mach 4 and Mach 5 nozzle configura-

tions are done assuming isentropic expansion because

the FSA data are not presently available. For this

method, pl and Pt,2 are calculated by first isentrop-
ically expanding the gas to the desired test stream

Mach number and then solving the governing equa-

tions. Once the values for pl and Pt,2 are obtained,
the calculation procedure for all the other test stream
flow properties is the same for both these methods.

Finally, the transport properties of the mixture are
calculated.

Combustor Conditions

Gas mixture. The calculation method for the

proportions of fuel, air, and oxygen enrichment to

produce the combustion products at specified com-

bustor pressure PTC and combustor temperature
TTC with the desired volumetric proportion of oxy-

gen x is illustrated by the initial portion of the



computerflowchartin figure7. Thechemicalequa-
tion for methane-airwith oxygenenrichedcombus-
tion is

CH4+ z(0.2102 + 0.79N2) + yO2

= CO2 + 2H20 + (y + 0.21z - 2)02 + (0.79z)N2 (1)

This equation represents the chemical reaction for

1 mole of methane fuel with z moles of air and y moles

of oxygen enricllment. The air is assumed to have

a nitrogen to oxygen volumetric ratio of 79 to 21.
The numerical coefficient of 02, y + 0.21z - 2, in

the right-hand side of the equation corresponds to
the amount of oxygen present in the combustion

products.

The proportions of oxygen and air in terms of
methane fuel can be used to define the elemental

composition of aC, a H, a O, and aN, respectively. For

CH4

 H/ac = 4 (2)

The mole ratios of oxygen to carbon and nitrogen to
carbon from the left-hand side of equation (1) are

ao/a c = 2(y + 0.21z) (3)

and

crN/a C = 2(0.79z) (4)

The four elemental constants of a C, a O, all,

and aN per unit mass of mixture are related by the

following elemental mass balance equation:

12aC +aH + 16ao + 14aN = 1 (5)

where the numerical coefficients of aC, OH, ao,

and a N are the atomic weights of C, H, O, and N,

respectively. An expression for a C is obtained by

combining equations (2) to (4) with equation (5) as

a C = 1/(16 + 32y + 28.84z) (6)

The proportion of each element supplied to the

combustor is a function of moles of oxygen and air

per mole of methane fuel. This proportion can be

resolved by specifying the volumetric ratio Xc of the

oxygen to the total of the products in the combustor

defined by the following equation:

Xc: (y+O.21Zc-2)/(y+zc+l) (7)

The numerator of this ratio is the coefficient of

oxygen in the combustor which is contained in the
third term of the right-hand side of the general

equation (1) with Zc instead of z. The denominator

is the total moles of the reacting combustor gas in

the equation. In general, x and z are defined to

describe the gas mixture that is produced in the
test stream. The subscripted parameters Xc and

z_ (fig. 7) correspond to the combustor gas that is
directly expanded to the test stream for the Mach 7
case or the mixer for the Mach 4 and Mach 5 cases.

As indicated by the flowchart in figure 7, the

gas composition supplied to the combustor is deter-

mined by specifying the required proportion of oxy-

gen in the test section x (which is equal to Xc for tile

Mach 7 case) and by assuming an initial value for zc

to compute y from equation (7). The combustor el-
emental mole numbers are computed using the com-

bustor air moles Zc instead of z in the general equa-

tions (2) to (4) and (6). The chemical composition

of the gas is then computed as described in appen-
dix A; 10 species and 6 chemical reactions (eqs. (A1)

to (A6)) arc considered, and the species arc assumed
to be in chemical equilibrium. The chemical compo-

sition is computed for a specified combustor pressure

and temperature by simultaneously solving the set
of equations (A7) to (A16) (see ref. 7 for details).

The temperature of the combustion products is then

computed as explained in appendix B. Iterations are

made on Zc until the computed temperature of the

combustion products converges on the specified com-
bustor temperature (fig. 7). This iterative procedure

will give the correct values of zc and y and the corre-

sponding chemical and thermodynamic properties of

the combustor gas. For the methane-air case, no oxy-

gen enrichment exists, and the computation is done

with y set to zero.

Mass flow rates. The transpiration-cooled air

is injected upstream and downstream of the Mach 7

nozzle throat, respectively. The coolant mass flow
rates are controlled at the designed level (which

is proportional to PTC) and are defined by the

respective equations:

mu = 0.021(PTC) (8)

m d = 0.017(PTC) (9)

These correlations may be modified to include TTC

based upon the future optimization analysis of the

nozzle cooling performance.

The mass flow rates of combustor air mc and oxy-

gen mox per unit mass flow rate of fuel are deter-
mined from the computed values of Zc and y, respec-

tively, by using the following equations:

mc/rn I = zc(MWa/MW f ) (i0)

5



mox/mf = y(MWox/MWf) (11)

However, to compute the actual mass flow rates of

each gas, another equation that relates these mass

flow rates is developed assuming that the Mach 7
nozzle is choked.

First, a nozzle throat annular area that corre-

sponds to a choked mu (eq. (8)) is computed assum-

ing a total pressure of PTC and a total temperature

of 1360°R, which is the nozzle design inner surface
temperature. Next, an effective throat area, which

is the Mach ? nozzle geometrical throat area minus

the annular area that corresponds to the coolant flow
rnu, is calculated. Finally, the choked mass flow rate

through the effective area me is calculated using PTC
and TTC of the combustor gases. This mass flow rate

me is the sum of fuel, air, and oxygen which are sup-

plied to the combustor, as indicated by the following
expression:

m e =mf q--mc+mox (12)

Tile resulting mixture pressure is computed, assum-

ing the second throat is choked, as

The value of zt is adjusted, and the gas mixture com-

position and properties are computed until conver-

gence on TTM is obtained utilizing l/he same proce-

dure used for the combustor. The value of y for the

mixer calculations corresponds to the LOX supplied
to the combustor.

For normal operations in which the desired oxy-
gen content of the test stream z is 0.21, the combus-

tor gas produced at Zc = 0.21 is mixed with air (with
the same oxygen content) so that x' = x. However,

if a different oxygen content is desired, an additional

iteration is required to adjust Xc, and the whole com-

putational procedure is repeated using zt instead of

Zc in equation (7) until the desired oxygen content is
obtained (fig. 7).

=

The mass flow rates of rnf, rnc, and mox are calcu-
lated by solving equations (10) to (12).

Mixer Conditions

For Mach 4 and Mach 5 nozzle configurations,
the mixer supplies additional air to achieve flight-

temperature simulation and higher mass flow rates
for low-altitude simulation. The airflow rate to

the mixer mm and pressure PTM are calculated to

provide a specificd mixer temperature TTM. The

gas temperatures in the mixer for the Mach 4 and

Mach 5 cases were assumed to be the design values
of 1640°R and 2350°R (for flight-temperature sim-

ulation), respectively. These temperatures produce

a test stream static temperature of approximately
400°R at the nozzle exit. However, the code can be

run for a range of mixer temperatures.

The computation procedure for the mixer flow

quantities (fig. 7) is similar to that explained in the

section entitled "Mass Flow Rates" for computing

the combustor flow quantities. For the combustor
analysis, zc moles are represented by me, but for the

mixer, zt moles of air are represented by the total

airflow rot, which is thc sum of combustor air rnc,

the transpiration-coolant air mu and rod, and the

mixer air turn. The total mass flow rate through the

second throat is the sum of the fuel and the oxygen
supplied in the combustor and the total airflow rate,
which is

ms = m/+ mox + rnt (13)

Test Stream Properties

As indicated by the latter portion of the computer
flowchart in figure 7, the test stream properties arc

computed from data correlations measured using the

tunnel FSA or assuming isentropic expansion of the
combustion products to the test stream Mach num-

ber. When using FSA data, Pl and Pt,2, respectively,
arc linearly correlated to TTC and PTC. In the latter

case, Pl and Pt,2 are calculated by isentropieally ex-

panding the gas to the desired Mach number and by

solving the continuity, momentum, energy, and state
equations. The other test stream properties, on both

sides of tile normal shock, are computed by assuming

that the enthalpies ht,1 and ht,2 are equal and by solv-
ing the governing equations. The chemical compo-

sition, thermodynamic properties, and other stream

properties are calculated by methods described in ap-
pendices A, B, and C, respectively.

Flow survey apparatus data or isentropic

expansion. The test stream properties, which are

computed using FSA measurements of Pl and Pt,2
(fig. 8), include the losses in the tunnel. The mea-

sured Pt,2 and Pl, at a location 84 in. downstream of
the Mach 7 nozzle exit, are correlated to TTC and
PTC as

pt,2/PTC = (1.2856 x 10-6)TTC + 0.00277 (15)

and

Pl/Pt,2 = (-4.00 x 10-6)TTC + 0.03080 (16)



Thesecorrelationsfor theMach7 nozzleconfigura-
tion, whicharefrom FSAdata that wereobtained
beforethe tunnelmodification,will becorrected,if
necessary,onceFSAdatafromthe modifiedtunnel
areavailable.

In thecaseof theisentropicexpansionprocedure,
Pl and Pt,2 are calculated by isentropically expanding
the combustion products to the required test stream

Mach number and by solving the mass, momentum,

energy equations, and state equations. Because of

the unavailability of FSA data for Mach 5 and Mach 4

nozzle configurations, the isentropic expansion pro-
cedure is used to compute the values of Pl and Pt,2.

However, when FSA data become available, the cor-

relation for Pl and Pt,2 can be expressed in terms of
TTM and PTM, similar to equations (15) and (16),
and can be incorporated into the code. From these

computed Pl and Pt,2 values, the cMculation method
for all the flow properties upstream and downstream
of the shock is described in the following sections.

Computation of flow properties. The value

of Pt,2 is obtained from equation (15) for given com-
bustor conditions. The temperature of the combus-

tion products Tt,2 at Pt,2 is calculated as explained in
appendix B. The gas density at the stagnation con-

ditions of Pt,2 and Tt,2 is computed from the state
equation. The gas is isentropically expanded from

pt,2 and Tt,2 to P2 at an initially assumed value of 7"2
(fig. 7), and all the gas properties at P2 and 7'2 are
determined as explained subsequently.

First, a new static pressure p_ is calculated as

= p2 -

where the incremental pressure dp is calculated from

dp = -p2(s2 - st,2)/(Ro)

The term p_ is substituted for P2, and the iteration
is continued until dp satisfies a convergence criteria.

The gas composition and the thermodynamic prop-

erties are calculated at P2 and T2, and the flow prop-

erties P2 and 172are calculated from

P2 = p2/ RcrT2 (17)

and

v2 = [2J(ht,2 - h2)] 1/2 (18)

Next, V1 and Pl, which are obtained by solving

the mass and momentum equations across a normal

shock, are given by

yl = [(p2 - pl)/p2V2] + v2 (19)

and

Pl = p2(V2/V1) (20)

The value of T1 is calculated from the state equa-

tion using the values Pt and Pl obtained from equa-

tions (16) and (20), respectively, and an initial as-
sumption for a. The chemical composition and a

new value of a are computed at Pl and 7"1, and T1

is updated until it converges on or. The enthalpy of

gaseous mixture hi at Pl and T1 is determined, and
a differential enthalpy is calculated as

[
0.5V12

\
dh = ht,2 - _hl + /J)

The initially assumed T2 in the outermost loop of this
subroutine is adjusted, and the entire computation is
continued until the value of dh is less than a conver-

gence criteria E (fig. 7). The chemical composition,

thermodynamic properties, and transport properties
for the converged solution are calculated as described

in appendices A, B, and C, respectively.

The Mach number, unit Reynolds number, dy-

namic pressure, and stagnation heat-transfer rate are
calculated. The Mach number is defined as

M = (21)

where a --- x/g(dp/dp). In this equation, dp is calcu-
lated as the difference of static pressures correspond-

ing to two temperatures of Tt - dT and Tt + dT at Pt.
The value for dT is arbitrarily chosen to be I°R. The

difference in the densities dp, corresponding to dp for

this change in Tt, is determined from the calculated
chemical composition and the state equation.

The unit Reynolds number is calculated from

NRe = pV/# (22)

The dynamic pressure is calculated from

q = (0.5pV2)/144 (23)

The stagnation heat-transfer rate 0s for a spherically

blunted body of a unit radius of 1 ft is calculated

using the Fay and Riddell equation (ref. 8). The

quantities of cp, h, s, p, and #, which are required
for the calculation of ils, are computed for a wall

temperature of 540°R.

Results and Discussion

Mach 7 Configuration

The carpet plots of the flow properties for the

21-percent oxygen enrichment and no-enrichment

(no-LOX) cases are shown in figure 9 for the Mach 7



nozzleconfiguration. The combustoroperating
rangesfor PTC andTTC arc600psiato 3500psia
and 2500°R to 4000°R, respectively. However, for

the oxygen enrichment case (shown by the dashed
lines), PTC is linfited to 2000 psia because of the

oxygen run tank pressure limit. In the cross plots

of Pl versus T 1 (fig. 9(a)), Tt is slightly higher for
the oxygen enrichment case compared with the no-

LOX case. This difference increases with increasing

TTC. The variation of T1 with combustor pressure

is insignificant for both the LOX and no-LOX cases.

Note from equation (16) that Pl is assumed to bc
the same for both the LOX and no-LOX cases, and

it will be updated, if necessary, once the tunnel sur-
vey measurements arc available. Tile difference in the

properties of V1, Pl, M1, NRc, qs, and ql, shown in
figures 9(b) to 9(d), for the LOX and no-LOX cases

is very small. The Mach number variation of approx-

imately 6.1 to 7.2 in figure 9(c) is because of water

condensation. This variation is accounted for by the
FSA measurements in tile test section.

The test stream gas composition, in terms of mole

fraction cri/cr , is given in table I for both the LOX
and no-LOX cases for the 21-percent oxygen enrich-

meat. Note that only the major species of H20,
CO2, 02, and N2 arc listed in this table. The cal-

culated free-stream static temperature is less than

the chosen reference temperature of Tr = 536.67°R,

and the minor species are not considered for tern-

peratures below Tr (appendix A). The gas composi-
tion is listed for the combustor design temperature

of TTC = 3560°R. The composition is affected by

temperature, but it does not show significant change

within the operating range of the combustor pressure
of 600 psia to 3500 psia. The calculated value of the

test stream gas constant Rsp at this design temper-
ature, for both the LOX and no-LOX cases for the

21-percent oxygen enrichment, is 0.070 Btu/lbm-°R,

and the corresponding values of the ratio of specific
heats "_ arc 1.38.

Mach 5 and Mach 4 Configurations

The carpet plots for the Mach 5 and Mach 4 noz-

zle configurations for a combustor pressure range of

600 psia to 3500 psia and combustor temperature
of 3560°R are shown in figures 10 and 11, respec-

tively. The mixer design temperatures are 2350°R
and 1640°R for the Mach 5 and Mach 4 nozzle con-

figurations, respectively. The plots are shown for the

mixer design temperatures and for a few more mixer

temperatures. A very small variation exists in the

flow properties between the LOX and no-LOX cases.

The variation observed in the plot Pl versus T1 for the

Mach 7 case (fig. 9(a)) is not seen in similar plots for

the Mach 5 and Mach 4 cases (figs. 10(a) and ll(a)),
which is mainly because of the dominant effect of air
added in the mixer.

Figures 12 and 13 show the test stream properties
in terms of PTM and TTM for the Mach 5 and

Mach 4 cases, respectively. The plots in these figures
can be used to estimate the test conditions from the
mixer conditions alone. Correlations of combustor

and mixer conditions for the Mach 5 and Mach 4

cases arc shown in figures 14 and 15, respectively.
Note that no significant variation exists in these
plots between the LOX and no-LOX cases. Some

of the tunnel operational range and restrictions can

bc understood from these plots. For example, at

TTM = 2350°R (the temperature required for true-

temperature flight simulation) and PTM = 300 psia,

which is shown by the bold line in figure 14(b),
the combustor can be operated at different total

temperatures. However, for this mixer condition and

for TTC = 3000°R, the combustor pressure is above

2000 psia (fig. 14(a)). The combustor cannot be
operated at this temperature with the LOX because

the LOX run tank pressure upper limit is 2000 psia.

Figure 14(b) also shows that for the Mach 5 case at
TTM = 2350°R, the combustor cannot be operated

at TTC = 2500°R because the transpiration coolant

flows (mu and rn d in fig. 8) cool the combustor gas
slightly below TTM = 2350°R. As a result, the code

computes negative values of tile mixer airflow ram,

as shown in the plot in figure 14(b). However, the

mixer will require air addition for cooling.

Typical test stream gas composition for the

Mach 5 and Mach 4 cases is given in table I at the
mixer design temperatures. The gas composition is

not affected by PTC and TTC, but it changes with

TTM. Similar to the Mach 7 case, the minor species
are set to zero for the Mach 5 and Mach 4 cases be-

cause tile test stream static temperature is below the

reference temperature of Tr = 536.67°R. The values

of Rsp are 0.070 Btu/lbm-°R and 0.069 Btu/lbm-°R,

for the Mach 5 and Mach 4 nozzle configurations,
respectively, for both the LOX and no-LOX cases.

The corresponding value of ratio of specific heats 7
is 1.39.

Concluding Remarks

A computer program, HTT, has been developed
which calculates the thermodynamic, transport, and

flow properties of equilibrium chemically reacting
oxygen-enriched methane-air combustion products.

This program is tailored to compute the various
test stream flow properties and the mass flow re-

quirements of the Langley 8-Foot High-Temperature



Tunnelfor thenominalMachnumbersof 7, 5,and4
withandwithoutoxygenenrichment.However,this
computerprogramcanbe appliedwith only minor
programmodificationsto other facilitiesthat use
methane-air-oxygencombustionproductsasthetest
medium.Theoptiontocomputethetestsectionflow
usingflowsurveydataoranisentropicexpansionpro-
cedureis availablein thiscode.Theflowproperties

andoperationalcharacteristicsfor theexpectedop-
eratingenvelopeofthemodifiedtunnelarepresented
in thecarpetplotsto assisttunnelusersinpreparing
testplans.

NASALangleyResearchCenter
Hampton,VA23665-5225
May20,1992



Appendix A

Chemical Composition
The equilibriumchemicalcompositionof the

oxygen-methane-aircombustionproductsis consid-
eredthe uniquefunctionof partialpressuresPi and
temperaturc T. Thcse combustion products are

thought to be thermally perfect and composed of
4 elements, namely C, H, O, and N, and 10 chem-

ically reacting species numbered from 1 to 10 in the

following order: H20 , CO2, CO, 02, H2, N2, H, O,
OH, and NO. The six independent chemical reactions

are expressed as

CO+H20=CO2+H2 (A1)

2CO2 = 2CO + 02 (A2)

H2 ÷ 02 = 2OH (A3)

H2 = 2H (A4)

02 = 20 (A5)

02 + N2 = 2NO (A6)

These reactions are represented, respectively, in

terms of equilibrium constants Kp,j and mole num-
bers ai as

Kp,1 = 0.20.5/0.10.3 (AT)

Kp, 2 = 0.320.4/0.2 (AS)

Kp, 3 = 0"92/0"40"5 (A9)

Kp,4 = a_/a5 (A10)

Kp,5 = a_/a4 (A1 1)

Kp, 6 ----o"120/0.40.6 (A12)

The expression for Kp,j is given by

log Kp,j = BI/T + B2 + B3T + B4 T2 + B5 T3

where the constants B1 to B 5 are incorporated in the
code; these constants were obtained from reference 7

for the temperature ranges from 360°R to 1800°R,

1800°R to 5400°R, and 5400°R to 10800°R. The

units of Kp,j for reactions expressed by equa-
tions (A1), (A3), and (A6) are nondimensional, and
those for equations (A2), (A4), and (A5) are given in

atmospheres.

The four elemental balance equations are

0.H = 2al + 20.5 + 0.7 -i- o"9 (A13)

0.0 = al + 262 + a3 + 20.4 + as + 0.9 + 0.10 (A14)

aN ----20.6 + al0 (A15)

0.C = 0.2 + 0.3 (A16)

The composition is calculated by solving the six in-

dependent chemical equilibrium equations (eqs. (A7)

to (A12)), which simultaneously represent the chem-
ical reactions (eqs. (A1) to (A6)) and four elemental

balance equations (eqs. (A13) to (A16)).

For temperatures below Tr = 536.67°R, only the

major species of 0.1, 0.2, 0.4, and a6, which corre-

spond to H20, CO2, 02, and N2, respectively, are
assumed to be present in the mixture. The remain-

ing minor species are set to zero in equations (A13)

to (A16) to give

0.H = 2al

0.0 --- ffl + 20.2 + 2a4

a N = 20.6

(A17)

(A18)

(A19)

(A20)0.C = 0.2

The major species are directly calculated from these

equations once the elemental composition is known.

10



Appendix B

Thermodynamic Properties and
Temperature

Thermodynamic Properties
The thermodynamicproperties,namelyspecific

heat cp at constant pressure, enthalpy h, and en-

tropy s of the mixture at a given temperature and

pressure, are calculated.

The molar heat capacities of the species Cp at

constant pressure are given in terms of temperature
as

Cp,i = A1 + A2T + A3 T2 + A4T 3 + A5 T4 (B1)

The Cp values for the species are obtained from
reference 9 for four different temperature ranges
from 180°R to 720°R, 720°R to 1800°R, 1800°R

to 5400°R, and 5400°R to 10800°R. These values
have been fitted with a fourth-degree polynomial to

give the coefficients A1 to A5 of equation (B1).

The value of Cp is calculated using the equation

cp = ECp,iai (B2)

The enthalpy of the species Hi, minus the refer-

ence enthalpy Hi,r at Tr = 536.67°R, is

Hi - Hi,r = Cp,i dT (B3)

The enthalpy of the gaseous mixture h is computed

using the equation

h = Eai [(Hi - Hi,r) + Qi,r] (B4)

where the values of Qi,r (the heat of formation of the
pure species) are referenced to Tr = 536.67¢R and
are obtained from reference 9 and incorporated into

the code. The entropy of the species S is given by

EESi = Cp,i dT/T + Si, r - Rln(pi/pr) (B5)

where Si,r is the reference entropy of the species at
Tr = 536.67°R and Pr = 1 atmosphere, which are

obtained from reference 9 and are incorporated into
the code. The value of h is calculated from

s = EaiS_ (B6)

Temperature of Combustion Products

The temperature of the combustion products is

defined at a given pressure for a given fuel and ox-
idizer and at an initial temperature of the precom-

bustion species. An initially assumed temperature is
iterated until convergence is obtained by using the

following equation:

Eai [(Hi - Hi,r) + Qi,r]

= [(Hi - Hi,T)+ Qj,T]

The right-hand side refers to the precombustion

species and the left-hand side refers to the combus-

tion gas mixture. The initial temperature of the pre-
combustion species is chosen to be 536.67°R.

11



Appendix C

Transport Properties

Theviscositiesof all of thespeciesarecalculated
usingthefollowingequation(ref. 10):

Thenumericalvahmof1/1.4882istheconversionfac-
tor fromkg/m-secto Ibm-ft-sec.Valuesof thecol-
lisionintegralgt are obtained from reference 10, in
which f_ is tabulated as a function of kT/A. Values

of ¢ and A/k for the species are also obtained from
reference 10. The viscosity of the gaseous mixture p

is calculated using the following equation (refs. 10

and 11):

= _i/z¢_,j_/_ (c2)

where

[1 + (#i/#j)l/2(_'lWj/_|Wi) 1/4]

¢i'_= {2_[1+ (MWjMWj)]'/2} (ca)

The thermal conductivity K is given by the

Eucken equation (refs. 10 and ll) as

K = [_._+ (5/4)R<V (C4)

The Prandtl number Npr is calculated from

gpr = ,cz,/K (c5)

12
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Table I. Typical Test Stream Gas Composition in Terms of Mole Fraction ai/cr

Conditions

Mole fraction of species

H20 CO2 02 N2

Mach 7 nozzle configuration; TTC = 3560°R

No LOX 0.15200 0.07599 0.04206 0.73000

LOX .15420 .07710 .21000 .55870

Mach 5 nozzle configuration; TTM = 2350°R

No LOX 0.08314 0.04157 0.11810 0.75720
LOX .08358 .04179 .21000 .66460

Mach 4 nozzle configuration; TTM = 1640°R

No LOX 0.04778 0.02389 0.15720 0.77110
LOX .04792 .02396 .21000 .71810
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Figure 2. Schematic of Langley 8-Foot High-Temperature Tunnel.
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L-83-5681

Figure 3. Triple exposure of model during its entry into test section with flow survey apparatus in stowed
position.
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Figure 4. Langley 8-Foot High-Temperature Tunnel combustor. (Schematic is not drawn to scale; horizontal

distances have been shortened.)
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Figure 6. Modified nozzles for alternate Mach number capability, All linear dimensions are given in feet.
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Figure 7. Computational sequence of HTT code with oxygen enrichment.
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Figure 8. Locations of flow variables for flow computations.

21



T1, °R

500 --

450 --

400 --

350 --

-- No LOX
.... 21 percent 0 2

1 _- - - _- - - ' 4000

i
...... _ - - " 3000

TTC, °R

........... 2500
600 1000 1500 2000 2500 3000 3500

PTC, psia
300 I • I 1 I I I

0 .1 .2 .3 .4 .5 .6

Pl,psia

(a) Pressure and temperature.

V1,
fFsec

8OOO

750O

7000

65OO

6000

55OO

5000 I
0 .OO4

No LOX
21 percent 0 2

000

3560\\\\\
2500

600 1000 1500 2000 2500 3000 3500
PTC, psia

I I I
.001 .002 .003

Pl' Ibm/ft3

(b) Density and velocity.

Figure 9. Test flow characteristics for Mach 7 nozzle configuration with and without oxygen enrichment.
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Figure 10. Test flow characteristics for Mach 5 configuration with and without oxygen enrichment for
TTC = 3560°R.
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Figure 10. Concluded,
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Figure 11. Test flow characteristics for Mach 4 configuration with and without oxygen enrichment for
TTC = 3560°R.
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Figure 12. Test stream properties for Mach 5 configuration with and without oxygen enrichment.
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Figure 13. Test stream properties for Mach 4 configuration with and without oxygen enrichment.
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Figure 14. Correlation of combustor and mixer conditions for Mach 5 operation.
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