36 research outputs found

    AsfaltbelÀggning pÄ busshÄllplatser - FörÀndring av belÀggningsskador

    Get PDF
    Ökandet av den svenska kollektivtrafiken medför att fler busshĂ„llplatser behöver byggas och allt flera befintliga busshĂ„llplatser mĂ„ste underhĂ„llas. SvĂ„righeter och diskussioner som dyker upp Ă€r planeringen av drift- och underhĂ„ll pĂ„ busshĂ„llplatsernas vĂ€gbelĂ€ggningar samt val av egenskaper till dessa. Orsaken till svĂ„righeterna Ă€r att belĂ€ggningar ofta fĂ„r skador och defekter sĂ„som spĂ„rbildning, sprickor i hjulspĂ„r och slaghĂ„l som kan uppkomma av olika faktorer, vilka pĂ„verkar belĂ€ggningar olika mycket. Exempel pĂ„ sĂ„dana faktorer Ă€r bland annat trafikmĂ€ngden, Ă„ldern, materialkvaliteten och belĂ€ggningstemperaturen pĂ„ en belĂ€ggning. I denna studie har en regressionsmodell som berĂ€knar hur 10 olika belĂ€ggningsskador pĂ„ busshĂ„llplatser förĂ€ndras under en tidsperiod tagits fram. De faktorer som valdes att undersökas och som ingĂ„r i modellen Ă€r Ă„ldern pĂ„ belĂ€ggningen, aktuell trafikmĂ€ngd, förekomsten av rĂ€nndal och brunnar pĂ„ busshĂ„llplatsen, temperaturen dĂ„ belĂ€ggningen lades samt förekomsten av polymermodifierat bindemedel i belĂ€ggningens slit- och bindlager. Modellen bygger pĂ„ en okulĂ€r inventering som genomfördes pĂ„ totalt 61 busshĂ„llplatser i Malmö stad under vĂ„ren 2015. Fokus har lagts pĂ„ busshĂ„llplatser som har en belĂ€ggning av asfalt. Orsaken till varför modellen skapades Ă€r för att planeringen av befintliga belĂ€ggningars drift- och underhĂ„ll ska optimeras och Ă€ven för att egenskaper för framtida belĂ€ggningar ska vĂ€ljas pĂ„ ett effektivt sĂ€tt. Resultatet visar att den uppskattade regressionsmodellen som har skapats fungerar olika bra för olika skador. För att kontrollera hur bra modellen Ă€r berĂ€knades bland annat förklaringsgraden och standardavvikelsen för varje skada. BerĂ€kningarna gav en standardavvikelse som varierar mellan 12 procent och 55 procent samt ett relativt lĂ„g vĂ€rde pĂ„ förklaringsgraden, vilket tyder pĂ„ att modellen förklarar skadorna ganska dĂ„ligt. En jĂ€mförelse gjordes Ă€ven mellan vĂ€rdena som den uppskattade modellen gav och vĂ€rdena frĂ„n inventeringen för att se hur bra modellen stĂ€mmer överens med verkligheten. Det visade sig att de uppskattade vĂ€rdena skilde sig relativt mycket frĂ„n verkligheten. Regressionsmodellen visar Ă€ven att de faktorerna som undersöktes pĂ„verkar skadornas utveckling olika mycket. Bland annat visar modellen att förekomsten av rĂ€nndal och brunnar leder till mindre belĂ€ggningsskador med tiden. Dock Ă€r detta pĂ„stĂ„ende begrundat enligt modellen och varierar troligtvis i verkligheten.The increase of the Swedish public transport causes more bus stops to be built and more existing bus stops to be maintained. The difficulties and discussions that crops up associated with the increasing public transport is the planning of operation and maintenance of bus stop pavements surface and the choice of properties to them. The reason for the difficulties is that damages and defects, such as groove formation, longitudinal cracks and potholes, often occurs on the pavement surface. These damages occurs due to various factors, whom affect the pavement different. Example of such factors are the age, the bus traffic volume, material quality and the coating temperature. In this study has a model that computes how 10 different damages on the pavement surface changes over a period of time been created. The factors that has been taken into account when creating the model is the age, the bus traffic volume, the presence of a valley and wells on the bus stop, the coating temperature and the presence of polymer modified binders in the wearing- and binder layer. The model is based on an inventory of 61 bus stops that was conducted in spring 2015 in Malmo. The study is focused on bus stops that is made of asphalt. The reason why the model was created is to optimize the planning of operation and maintenance and also to streamline the selection of properties of future pavement surfaces. The results of this study show that the estimated model that has been created is various good and applies differently for each damage. The degree of explanation and the standard deviation among other things, was calculated to check how good the model is and how applicable it is to reality. The standard deviation varies between12 percent and 50 percent and according to the calculations the degree of explanation is relatively low value, which indicates that the model explains the damages rather bad. A comparison was made between the values that the model yielded and the values of the inventory to see how well the model was consistent with reality. It turned out that the estimated values differed quite a lot from reality and the factors that were examined affects the damage development in different ways. The model also showed that the presence of a valley and wells on a bus stop leads to less damage over time. However, this statement is pondered according to the model and varies likely in reality

    ADSORPTION PERFORMANCE OF MG0.33NI0.33CO0.33FE2O4 NANOPARTICLES DOPED WITH GADOLINIUM AND LANTHANUM FOR LEAD (II) REMOVAL

    Get PDF
    The issue of water pollution has become a major concern in recent times, and the need for effective strategies for treating contaminated water sources has become more urgent. One promising approach that has been gaining attention in the field of wastewater treatment is the use of nano-ferrites. In this regard, novel Mg0.33Ni0.33Co0.33LaxFe2-xO4 and Mg0.33Ni0.33Co0.33GdxFe2-xO4 nanoparticles (NPs), where x = 0.00, 0.01 and 0.08, were synthesized to test their adsorption performance for the removal of Pb (II). The structural properties and morphology were investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). As Gd and La content increase, the bandgap energy increases while Urbach energy decreases. The experimental condition for the adsorption process was the adsorbent dosage of 40 mg and contact time of 30, 60, and 90 min at room temperature. Under the recommended conditions, Pb (II) removal % were obtained as 38 %, 41 % and 75 % for Mg0.33Ni0.33Co0.33Fe2O4, Mg0.33Ni0.33Co0.33LaxFe2-xO4 with x = 0.01 and Mg0.33Ni0.33Co0.33GdxFe2-xO4 with x = 0.08, respectively. Therefore, doping ferrite nanoparticles with rare earth metals improve their properties and enable its usage in wastewater treatment particularly for the removal of heavy metals

    The Effect of Salt on Stability of Aqueous Foams

    Get PDF
    The properties of foams are often affected by environmental variables such as salt contamination. The objective of this study is to investigate the impact of salt on the drainage behavior of aqueous foams. To accomplish this objective, drainage experiments were conducted on aqueous foams. Test variables were foam quality (40–65%), and salt content (0% to 18%), and type. To investigate drainage, the foam was generated in a flow loop and trapped in a vertical test section. Then, the pressure profile in the foam column was measured using ten pressure sensors. Foam drainage is determined as a function of time using measured pressure profiles. The results show that the drainage of NaCl-containing foams decreased with foam quality, whereas the CaCl2-containing foams did not exhibit a clear trend with foam quality. The effect of salt content on foam rheology was minimal.This publication was made possible by an NPRP award [NPRP 10-0115-170165] from the Qatar National Research Fund (a member of The Qatar Foundation). Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye

    Serum Levels of Tissue Inhibitors of Metalloproteinase 2 in Patients With Systemic Sclerosis With Duration More Than 2 Years: Correlation With Cardiac and Pulmonary Abnormalities

    Get PDF
    In this study, we measured the serum concentration of TIMP-2 in patients with systemic sclerosis (SSc) and explored its possible correlation with cardiac and pulmonary lesions. We studied 42 patients with SSc, with duration equal to or more than 2 years. CT chest, ECG, echocardiography, and serum TIMP-2 concentration measurement using ELISA technique were performed in all patients and in 25 normal controls. The mean serum levels of TIMP-2 in patients was higher than in controls (P = .005). The mean CT score of dSSc patients with elevated TIMP-2 levels was significantly higher than dSSc patients with normal levels (P = .013). Four patients out of five with elevated TIMP-2 levels showed diastolic dysfunction (80%), compared to 2 out of 15 lSSc patients with normal levels (13.3%), with P = .014. Our research, though involving a small group of patients, points to the probable role of TIMP-2 in the development of pulmonary lesions in dSSc patients and cardiac lesions in lSSc patients with duration equal to or more than 2 years

    A Comparative Clinical Study of the Effect of Denture Cleansing on the Surface Roughness and Hardness of Two Denture Base Materials

    Get PDF
    AIM: This study aimed to verify the influence of oral environment and denture cleansers on the surface roughness and hardness of two different denture base materials. METHODS: A total of sixteen identical removable disc specimens (RDS) were processed. Eight RDS were made from heat-cured acrylic resin (AR) and the other eight were fabricated from thermoplastic injection moulded resin (TR). Surface roughness and hardness of DRS were measured using ultrasonic profilometry and Universal testing machine respectively. Then the four RDS (two AR and two of TR) were fixed to each maxillary denture, after three months RDS were retrieved. Surface roughness and hardness of RDS have measured again.RESULTS: The surface roughness measurements revealed no significant difference (p >0.05) for both disc groups at baseline. However, both groups showed a significant increase in the surface roughness after three months with higher mean value for (TR) group. On the other hand, the (AR) group showed higher hardness mean value than (TR) group at baseline with no significant decrease in the hardness values (p >0.05) following three months follow-up period. CONCLUSIONS: Denture cleansers have an effect on the dentureñ€ℱs surface roughness and hardness concurrently with an oral condition which will consequently influence the complete denturesñ€ℱ lifetime and patientsñ€ℱ satisfaction

    GPC3 gene expression and allelic discrimination of FZD7 gene in Egyptian patients with hepatocellular carcinoma

    Get PDF
    Background: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide, and especially in Egypt. Early diagnosis of HCC greatly improves the survival and prognosis of patients. Low sensitivity and specificity of alpha-fetoprotein (AFP) has led to the demand for novel biomarkers of HCC. The aim of the present study was to evaluate the validity of frizzled-7 (FZD7) and glypican-3 (GPC3) gene expression as potential biomarkers for HCC early diagnosis, and to investigate the association between FZD7 rs2280509 polymorphism and HCC risk. Materials and methods: Quantification of FZD7 and GPC3 gene expression by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay, and genotyping FZD 7 (rs2280509 SNP) gene polymorphism using RT-PCR. Results: The current results revealed that FZD7 gene expression had a greater area under the curve (AUC) for identifying HCC than GPC3 gene expression and AFP levels. The combination of the three markers as a panel showed a better diagnostic performance with a greater AUC than any of the single markers alone (p < 0.05). The FZD7 rs2280509 polymorphism (CT) was found to be significantly associated with an increased risk of HCC. The CT genotype and T allele were significantly more prevalent in the HCC group compared to either the cirrhosis (p = 0.03) or control groups (p = 0.0009 and 0.002; respectively). Conclusion: FZD7 and GPC3 gene expressions have a complementary role in early HCC detection, with a greater diagnostic sensitivity and accuracy than AFP. In addition, FZD7 rs2280509 polymorphism is significantly associated with an increased risk of HCC in the Egyptian population

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore