12 research outputs found

    Incidence, clinical characteristics and management of inflammatory bowel disease in Spain: large-scale epidemiological study

    Get PDF
    (1) Aims: To assess the incidence of inflammatory bowel disease (IBD) in Spain, to describe the main epidemiological and clinical characteristics at diagnosis and the evolution of the disease, and to explore the use of drug treatments. (2) Methods: Prospective, population-based nationwide registry. Adult patients diagnosed with IBD—Crohn’s disease (CD), ulcerative colitis (UC) or IBD unclassified (IBD-U)—during 2017 in Spain were included and were followed-up for 1 year. (3) Results: We identified 3611 incident cases of IBD diagnosed during 2017 in 108 hospitals covering over 22 million inhabitants. The overall incidence (cases/100, 000 person-years) was 16 for IBD, 7.5 for CD, 8 for UC, and 0.5 for IBD-U; 53% of patients were male and median age was 43 years (interquartile range = 31–56 years). During a median 12-month follow-up, 34% of patients were treated with systemic steroids, 25% with immunomodulators, 15% with biologics and 5.6% underwent surgery. The percentage of patients under these treatments was significantly higher in CD than UC and IBD-U. Use of systemic steroids and biologics was significantly higher in hospitals with high resources. In total, 28% of patients were hospitalized (35% CD and 22% UC patients, p < 0.01). (4) Conclusion: The incidence of IBD in Spain is rather high and similar to that reported in Northern Europe. IBD patients require substantial therapeutic resources, which are greater in CD and in hospitals with high resources, and much higher than previously reported. One third of patients are hospitalized in the first year after diagnosis and a relevant proportion undergo surgery. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole

    Get PDF
    This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this recordThe highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A∗ is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU ≈ 1400 Schwarzschild radii, the star has an orbital speed of ≈ 7650 km s-1, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s-1/c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f, with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 ± 0.09|stat ± 0.15|sys. The S2 data are inconsistent with pure Newtonian dynamics

    Incidence, Clinical Characteristics and Management of Inflammatory Bowel Disease in Spain : Large-Scale Epidemiological Study

    Get PDF
    (1) Aims: To assess the incidence of inflammatory bowel disease (IBD) in Spain, to describe the main epidemiological and clinical characteristics at diagnosis and the evolution of the disease, and to explore the use of drug treatments. (2) Methods: Prospective, population-based nationwide registry. Adult patients diagnosed with IBD-Crohn's disease (CD), ulcerative colitis (UC) or IBD unclassified (IBD-U)-during 2017 in Spain were included and were followed-up for 1 year. (3) Results: We identified 3611 incident cases of IBD diagnosed during 2017 in 108 hospitals covering over 22 million inhabitants. The overall incidence (cases/100,000 person-years) was 16 for IBD, 7.5 for CD, 8 for UC, and 0.5 for IBD-U; 53% of patients were male and median age was 43 years (interquartile range = 31-56 years). During a median 12-month follow-up, 34% of patients were treated with systemic steroids, 25% with immunomodulators, 15% with biologics and 5.6% underwent surgery. The percentage of patients under these treatments was significantly higher in CD than UC and IBD-U. Use of systemic steroids and biologics was significantly higher in hospitals with high resources. In total, 28% of patients were hospitalized (35% CD and 22% UC patients, p < 0.01). (4) Conclusion: The incidence of IBD in Spain is rather high and similar to that reported in Northern Europe. IBD patients require substantial therapeutic resources, which are greater in CD and in hospitals with high resources, and much higher than previously reported. One third of patients are hospitalized in the first year after diagnosis and a relevant proportion undergo surgery

    Correction : Chaparro et al. Incidence, Clinical Characteristics and Management of Inflammatory Bowel Disease in Spain: Large-Scale Epidemiological Study. J. Clin. Med. 2021, 10, 2885

    Get PDF
    The authors wish to make the following corrections to this paper [...]

    GRAVITY - Reaching out to SgrA* with VLTI

    No full text
    As one of the 2nd generation of interferometric instruments in VLTI, GRAVITY was installed at the end of 2015 and has been observing the Galactic Center since May 2016. With the goal to reach an accuracy of tens of micro arcseconds, it is able to perform the most precise astrometric measurement of SgrA* to date. For that purpose, GRAVITY combines the light collected (coherently) from of all the 8 m UTs or the four 1.8 m ATs providing infrared wavefront sensing to control the telescope adaptive optics, two interferometric beam combiners (one for fringe-tracking and one for the science object), an acquisition camera and various laser guiding systems for beam stabilization, as well as a dedicated laser metrology to trace the optical path length differences for narrow angle astrometry. Operating in K band with an active stabilization of the science channel, GRAVITY is able to increase the typical integration time from a few milliseconds (the typical atmospheric coherence time) to minutes, which implies a big leap in sensitivity allowing to observe fainter objects (K=19 in science detector) with the power of a 130m baseline interferometer, as it is the close environment of the supermassive black hole located in the center of our Galaxy

    Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole

    No full text
    International audienceThe highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A✻ is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU ≈ 1400 Schwarzschild radii, the star has an orbital speed of ≈7650 km s−1, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s−1/c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f , with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 ± 0.09|stat ± 0.15|sys. The S2 data are inconsistent with pure Newtonian dynamics.Key words: Galaxy: center / gravitation / black hole physics⋆ This paper is dedicated to Tal Alexander, who passed away about a week before the pericentre approach of S2.⋆⋆ GRAVITY is developed in a collaboration by the Max Planck Institute for extraterrestrial Physics, LESIA of Paris Observatory/CNRS/Sorbonne UniversitĂ©/Univ. Paris Diderot and IPAG of UniversitĂ© Grenoble Alpes/CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the CENTRA – Centro de Astrofisica e Gravitação, and the European Southern Observatory.⋆⋆⋆ Corresponding author: F. Eisenhauer e-mail: [email protected]

    GRAVITY - Reaching out to SgrA* with VLTI

    No full text
    International audienceAs one of the 2nd generation of interferometric instruments in VLTI, GRAVITY was in-stalled at the end of 2015 and has been observing the Galactic Center since May 2016. Withthe goal to reach an accuracy of tens of micro arcseconds, it is able to perform the mostprecise astrometric measurement of SgrA* to date. For that purpose, GRAVITY combinesthe light collected (coherently) from of all the 8 m UTs or the four 1.8 m ATs providing in-frared wavefront sensing to control the telescope adaptive optics, two interferometric beamcombiners (one for fringe-tracking and one for the science object), an acquisition cameraand various laser guiding systems for beam stabilization, as well as a dedicated laser metrol-ogy to trace the optical path length differences for narrow angle astrometry. Operating inK band with an active stabilization of the science channel, GRAVITY is able to increasethe typical integration time from a few milliseconds (the typical atmospheric coherencetime) to minutes, which implies a big leap in sensitivity allowing to observe fainter objects(K=19 in science detector) with the power of a 130m baseline interferometer, as it is theclose environment of the supermassive black hole located in the center of our Galaxy
    corecore