22 research outputs found

    On identifiability of MAP processes

    Get PDF
    Two types of transitions can be found in the Markovian Arrival process or MAP: with and without arrivals. In transient transitions the chain jumps from one state to another with no arrival; in effective transitions, a single arrival occurs. We assume that in practice, only arrival times are observed in a MAP. This leads us to define and study the Effective Markovian Arrival process or E-MAP. In this work we define identifiability of MAPs in terms of equivalence between the corresponding E-MAPs and study conditions under which two sets of parameters induce identical laws for the observable process, in the case of 2 and 3-states MAP. We illustrate and discuss our results with examples

    Bayesian analysis of the stationary MAP2

    Get PDF
    In this article we describe a method for carrying out Bayesian estimation for the two-state stationary Markov arrival process (MAP(2)), which has been proposed as a versatile model in a number of contexts. The approach is illustrated on both simulated and real data sets, where the performance of the MAP(2) is compared against that of the well-known MMPP2. As an extension of the method, we estimate the queue length and virtual waiting time distributions of a stationary MAP(2)/G/1 queueing system, a matrix generalization of the M/G/1 queue that allows for dependent inter-arrival times. Our procedure is illustrated with applications in Internet traffic analysis.Research partially supported by research grants and projects MTM2015-65915-R, ECO2015- 66593-P (Ministerio de Economía y Competitividad, Spain) and P11-FQM-7603, FQM-329 (Junta de Andalucía, Spain). The authors thank both the Associate Editor and referee for their constructive comments from which the paper greatly benefited

    Robust newsvendor problem with autoregressive demand

    Get PDF
    This paper explores the classic single-item newsvendor problem under a novel setting which combines temporal dependence and tractable robust optimization. First, the demand is modeled as a time series which follows an autoregressive process AR(p), p ≥ 1. Second, a robust approach to maximize the worst-case revenue is proposed: a robust distribution-free autoregressive forecasting method, which copes with non-stationary time series, is formulated. A closed-form expression for the optimal solution is found for the problem for p = 1; for the remaining values of p, the problem is expressed as a nonlinear convex optimization program, to be solved numerically. The optimal solution under the robust method is compared with those obtained under two versions of the classic approach, in which either the demand distribution is unknown, and assumed to have no autocorrelation, or it is assumed to follow an AR(p) process with normal error terms. Numerical experiments show that our proposal usually outperforms the previous benchmarks, not only with regard to robustness, but also in terms of the average revenue.Ministerio de Economía y CompetitividadJunta de Andalucí

    Variable selection for Naive Bayes classification

    Get PDF
    The Naive Bayes has proven to be a tractable and efficient method for classification in multivariate analysis. However, features are usually correlated, a fact that violates the Naive Bayes' assumption of conditional independence, and may deteriorate the method's performance. Moreover, datasets are often characterized by a large number of features, which may complicate the interpretation of the results as well as slow down the method's execution. In this paper we propose a sparse version of the Naive Bayes classifier that is characterized by three properties. First, the sparsity is achieved taking into account the correlation structure of the covariates. Second, different performance measures can be used to guide the selection of features. Third, performance constraints on groups of higher interest can be included. Our proposal leads to a smart search, which yields competitive running times, whereas the flexibility in terms of performance measure for classification is integrated. Our findings show that, when compared against well-referenced feature selection approaches, the proposed sparse Naive Bayes obtains competitive results regarding accuracy, sparsity and running times for balanced datasets. In the case of datasets with unbalanced (or with different importance) classes, a better compromise between classification rates for the different classes is achieved.This research is partially supported by research grants and projects MTM2015-65915-R (Ministerio de Economia y Competitividad, Spain) and PID2019-110886RB-I00 (Ministerio de Ciencia, Innovacion y Universidades, Spain) , FQM-329 and P18-FR-2369 (Junta de Andalucia, Spain) , PR2019-029 (Universidad de Cadiz, Spain) , Fundacion BBVA and EC H2020 MSCA RISE NeEDS Project (Grant agreement ID: 822214) . This support is gratefully acknowledged. Documen

    Cost-sensitive feature selection for support vector machines

    Get PDF
    Feature Selection (FS) is a crucial procedure in Data Science tasks such as Classification, since it identifies the relevant variables, making thus the classification procedures more interpretable and more effective by reducing noise and data overfit. The relevance of features in a classification procedure is linked to the fact that misclassifications costs are frequently asymmetric, since false positive and false negative cases may have very different consequences. However, off-the-shelf FS procedures seldom take into account such cost-sensitivity of errors. In this paper we propose a mathematical-optimization-based FS procedure embedded in one of the most popular classification procedures, namely, Support Vector Machines (SVM), accommodating asymmetric misclassification costs. The key idea is to replace the traditional margin maximization by minimizing the number of features selected, but imposing upper bounds on the false positive and negative rates. The problem is written as an integer linear problem plus a quadratic convex problem for SVM with both linear and radial kernels. The reported numerical experience demonstrates the usefulness of the proposed FS procedure. Indeed, our results on benchmark data sets show that a substantial decrease of the number of features is obtained, whilst the desired trade-off between false positive and false negative rates is achieved

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≥ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≥ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≥80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≥80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≥80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≥80 years; p = 0.003).Independent predictors of mortality were age ≥ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≥ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    A global optimisation approach for parameter estimation of a mixture of double Pareto lognormal and lognormal distributions

    No full text
    The double Pareto Lognormal(dPlN) statistical distribution, defined interms of both an exponentiated skewed Laplace distribution and alog normal distribution, has proven suitable for fitting heavy tailed data. In this work we investigate inference for the mixture of a dPlN component and ðk 1Þ lognormal components for k fixed,amodelforextremeandskeweddatawhichadditionallycapturesmulti- modality. The optimisationcriterionbasedonthelikelihoodmaximisationisconsidered,whichyieldsaglobal optimisation problem with an objective function difficult to evaluate and optimise. Variable Neighbour- hood Search(VNS)is proven to be a powerful tool to over come such difficulties. Our approach is illustrated with both simulated and real data, in which our VNS and a standard multistart are compared. The computationalexperienceshowsthattheVNSismorestablenumericallyandprovidesslightly better objective values
    corecore