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Abstract
This paper explores the classic single-item newsvendor problem un-

der a novel setting which combines temporal dependence and tractable
robust optimization. First, the demand is modeled as a time series
which follows an autoregressive process AR(p), p ≥ 1. Second, a ro-
bust approach to maximize the worst-case revenue is proposed: a ro-
bust distribution-free autoregressive forecasting method, which copes
with non-stationary time series, is formulated. A closed-form expres-
sion for the optimal solution is found for the problem for p = 1; for the
remaining values of p, the problem is expressed as a nonlinear convex
optimization program, to be solved numerically. The optimal solution
under the robust method is compared with those obtained under two
versions of the classic approach, in which either the demand distri-
bution is unknown, and assumed to have no autocorrelation, or it is
assumed to follow an AR(p) process with normal error terms. Nu-
merical experiments show that our proposal usually outperforms the
previous benchmarks, not only with regard to robustness, but also in
terms of the average revenue.
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1 Introduction

The single-period problem (SPP), also known as the newsvendor problem,
is a simple yet rich inventory model which has been widely studied in the
Operations Research field due to its versatility and applicability to many
business decision problems, in fields such as managing booking and capacity
in airlines companies (Weatherford and Pfeifer (1994)), health insurances
(Rosenfield (1986); Eeckhoudt et al. (1991)), scheduling (Baker and Scudder
(1990)), retailers and managers order quantity decision in sports and fashion
industries (Gallego and Moon (1993)), etc.

The basic version of the problem consists in making a one-step decision
on the quantity Q to be bought of one single perishable product under the
assumption that the demand is a random variable with known distribution
F . If the decision maker buys each unit at cost c and sells it at price v, then

the expected revenue is maximized by buying exactly Q∗ = F−1
(

1− c

v

)
units.

Numerous variants of the classical SPP have been proposed in the liter-
ature; some of them will be discussed below, but for a fuller account of the
subject we refer the reader to Khouja (1999); Petruzzi and Dada (1999); Qin
et al. (2011).

The traditional assumption that the demand probability distribution is
known may be unrealistic in many cases. In addition, if the demand is in-
ferred from sample data, then the resulting estimate may lack of desirable
statistical properties (consistency, asymptotic normality...), for example, for
small sample sizes. To overcome these and other related problems, some
distribution-free approaches have been considered in the literature, Scarf
(1958) being the first to give a closed-form solution to the newsvendor prob-
lem when only the demand mean and the variance are assumed to be known.
Two more remarkable distribution-free works are Gallego and Moon (1993),
which provided an extension to Scarf’s solution, and Yue et al. (2006), in
which the demand density function is assumed to belong to a specific family
of density functions. Other articles which cope with demand uncertainty are
Ding et al. (2002); Dana and Petruzzi (2001); Godfrey and Powell (2001).
However, as pointed out in See and Sim (2010); Bandi and Bertsimas (2012),
not only the assumption of known distribution of the demand may be too
strong, but also to estimate the mean and variance from the sample data
and accommodate them to an assumed distribution function may generate
drastic errors in the inventory policy. Moreover, demand is in fact usually
correlated along time, so assuming demands for each period are independent
and identically distributed is in practice unrealistic (Lee et al., 2000; Graves,
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1999; Kahn, 1987).
For the reasons mentioned above, some authors have studied inventory

models with time-correlated demand, including AR models (Aviv, 2002; Rey-
man, 1989; Johnson and Thompson, 1975), compound Poisson processes
(Shang and Song, 2003), martingale models of forecast evolution (Dong and
Lee, 2003; Lu et al., 2006; Wang et al., 2012), factor models (See and Sim,
2010) or estimation via Kalman filter (Aviv, 2003). Most of these papers ei-
ther assume perfect knowledge of the distribution function (Levi et al., 2008;
Aviv, 2003, 2002; Shang and Song, 2003; Wang et al., 2012; Reyman, 1989)
or are focused in calculating and optimizing bounds of the objective function.
In some cases, as See and Sim (2010); Lu et al. (2006); Dong and Lee (2003),
those bounds are distribution-free, but no optimal solutions are obtained. In
contrast, in the work developed here no distributional assumptions are made
and the optimal solution is obtained with a closed expression for a particular
case. However, the problem to be solved in the remaining cases is extremely
tractable due to its structural properties: it is a low-dimensional convex
problem for which accurate solutions are easy to obtain. Moreover, we do
not only cope with temporal demand but also take into account robustness
in terms of uncertainty and risk aversion, which provides great novelty to
this paper.

A different matter for discussion in the SPP literature is the choice of
the objective function. In most paper the expected revenue is maximized.
However, depending on the decision maker’s preferences, it may be reasonable
(if not necessary) to use other criteria, such as optimizing the probability of
achieving a target profit, see for example Kabak and Schiff (1978) or Lau
(1980), the Return of Investment (Thakkar et al. (1983)), the Cost-Volume-
Profit, the CVaR (Chen et al. (2009)) or other risk-averse policies (Eeckhoudt
et al. (1995); Choi et al. (2011)).

Robustness issues have also been addressed. The robust approach in the
newsvendor problem deals with uncertainty in the demand while minimizing
the impact over the optimal solution of the worst-case scenario. For example,
the landmark Scarf’s rule, as well as Bertsimas and Thiele (2006) adopt such
a criterion, although both approaches enforce independence of the demand
along time. On the contrary, our approach would address the worst-case
analysis while coping with time-correlated demands. The above-mentioned
paper of Yue et al. (2006), as well as Perakis and Roels (2008); Zhu et al.
(2013); Jiang et al. (2011) consider the minimax regret decision criterion
instead.

In this paper we address the newsvendor problem from a new perspec-
tive, integrating a distribution-free design with temporal dependence in the
demand, into a robust optimization approach. Specifically, our main contri-
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butions are:

1. We consider the demand as a time series with non-negligible autocorre-
lation coefficients. For simplicity, the basic yet efficient autoregressive
process of some order p, AR(p), is used as time series model. We
follow a distribution-free approach, in the sense that no distributional
assumption is imposed over the error terms of the autoregressive model.

2. We implement a robust optimization method based on uncertainty sets
(Bandi and Bertsimas, 2012) to estimate the demand forecast. As
the goal is to minimize the losses in the worst-case realization of the
parameters, the lower bound obtained for the forecasted demand will
characterize the optimal solution. A closed-form expression for the
optimal solution is obtained in the case p = 1, while for p ≥ 2 the
problem turns into a tractable nonlinear convex optimization program,
solved numerically.

3. We show that our approach outperforms two different, classic approaches.
In the first one, the demand distribution is assumed to be unknown and
is estimated from the sample observations, which are assumed to be in-
dependent; in the second one, the demand distribution is assumed to
follow an AR(p) process with normal error terms.

In this paper we perform a worst-case analysis, seeking the policy max-
imizing the worst-case revenue. This means buying as many units as given
by the worst case scenario, which takes place when the demand is as scarce
as possible when no shortage penalties are imposed. Therefore, a robust
forecasting method will be developed in order to obtain a prediction interval
for the demand, whose lower bound is chosen as the solution for the robust
newsvendor problem. Since demand is assumed to follow an autoregressive
process, we devote Section 2 to discuss the AR(p) forecasting method and its
robust counterpart, formulated using the concept of uncertainty sets. The
robust model is written as a nonlinear convex optimization problem, and a
closed-form solution is given for p = 1. In Section 3 we accommodate the
robust forecasting method to the proposed newsvendor problem, obtaining
the optimal solution for the particular case of demand following an AR(1)
process. In Section 3.2 we present numerical examples, where the robust
autoregressive model is tested against two different but classic prediction
methods, which are adapted for the newsvendor problem in Section 3.1. Last
section is devoted to concluding remarks and extensions.
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2 Robust forecasting method for AR(p) pro-

cesses

We start this section with a short discussion on autoregressive processes
which will model the demand of our SPP. Because of their simplicity and
versatility, autoregressive processes have been widely used to model time
series in different contexts where the temporal dependence is significant. A
time series {Xt, t > 0} follows an autoregressive process of order p ≥ 1
(noted AR(p)) if it can be expressed in the form

Xt = c+

p∑
k=1

θkXt−k + at, (1)

where c, θ1, ..., θp are coefficients and {at, t > 0} is the sequence of i.i.d
model’s error terms with expected value µa and variance σ2

a, for all t > 0.
Two realizations of autoregressive processes with different values of p are
illustrated in Figure 1. For a more detailed description of the autoregressive
process and interpretation of the coefficients in the model, see for example
Box et al. (2008).
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Figure 1: Examples of different AR(p) processes generated with normal er-
rors.

If the parameters in (1) are given (either they are known or estimated
from sample data up to time T ), then (1) can be used to forecast the process.
In particular, if the errors are assumed to follow a normal distribution, then
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the (1−α)% prediction interval for a forecasted value at time T + 1 is given
by

X̂T+1 ± z1−α/2σa (2)

where X̂T+1 is the estimated forecast, and z1−α/2 is the (1− α/2)th quantile
of the standard normal distribution. When the errors are not normally dis-
tributed, the use of (2) may lead to inaccurate results. This phenomenon will
be illustrated in detail in Section 3. The influence of the error distribution
over the demand can be seen in Figure 2, from which it is clear that normally
distributed errors may be too restrictive as they are not able to capture ex-
treme behavior of the demand, which is common in practice. Hence, if real
situations are wanted to be encompassed into autoregressive processes, the
assumption of normality must be left aside.

The next section addresses the robust counterpart of (2), for which no
probability distribution is imposed on the errors.

2.1 Statement of the ARUS(p) optimization problem

In this section we describe how to obtain a one-step robust prediction interval[
XT+1, XT+1

]
for the AR(p), under the assumption that a realization of the

process up to time T is available. To do this we use the concept of uncertainty
sets (see Bandi and Bertsimas (2012)). For this reason, we call our model
AutoRegressive process based on Uncertainty Sates, in short ARUS(p).The
value XT+1 is obtained by solving the ARUS(p) problem, defined as

min
c,θ1,...,θp,a1,...,aT+1

XT+1 (3)

s.t ∣∣∣∣∣ 1

T − p

T∑
t=p+1

at

∣∣∣∣∣ ≤ Γ1, (4)

1

T − p

T∑
t=p+1

a2t ≤ Γ2, (5)

Xt = c+

p∑
k=1

θkXt−k + at t = p+ 1, ..., T + 1,(6)

|aT+1| ≤ ∆ (7)

Similarly, the maximization of XT+1 yields XT+1. The rationale behind the
constraints in the ARUS(p) problem is the following. Constraints (4) and
(5) force both the mean and variance of the observed errors to be bounded,
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so as to bound the randomness of the variables. In (6) the consecutive values
of the process are expressed in terms of the previous p values, according to
the definition of the AR(p) process as in (1). Note that, as no restrictions
over the θk k = 1, ..., p are made, nonstationary processes can be addressed
by the ARUS(p). Finally, (7) implies that the absolute value of the random
value aT+1 (which represents the prediction error) is bounded above by some
constant ∆. The values of Γ1,Γ2 and ∆ in the formulation of the ARUS(p)
problem are chosen according to the practitioner’s criterion. Next, we de-
scribe a procedure to select such parameters using the concept of uncertainty
sets along the lines of Bandi and Bertsimas (2012). Since the errors terms
are independent, then Central Limit Theorem (CLT) yields an uncertainty
defined as

U (Γ∗1) =

{
(ap+1, . . . , aT ) s.t

∣∣∣∣∣ 1

T − p

T∑
t=p+1

at

∣∣∣∣∣ ≤ Γ∗1σa
√
T − p

T − p
+ µa

}
,

which in combination with (6) yields

U (Γ∗1) =

{
(c, θ1, . . . , θp) s.t

1

T − p

∣∣∣∣∣
T∑

t=p+1

Xt − c−
p∑

k=1

θkXt−k

∣∣∣∣∣ ≤ Γ∗1σa
√
T − p

T − p
+ µa

}
.

Therefore, constraint (4) may be rewritten as

1

T − p

∣∣∣∣∣
T∑

t=p+1

Xt − c−
p∑

k=1

θkXt−k

∣∣∣∣∣ ≤ Γ∗1σa
√
T − p

T − p
+ µa. (8)

The value Γ∗1 in (8) is a small constant that influences the accuracy of the
fit. Since µa and σa are unknown in practice, they need to be estimated. For
µa, note that there is no loss of generality in assuming µa = 0: the model
defined by (1) is equivalent to

Xt = (c+ µa) +

p∑
k=1

θkXt−k + εt, .

εt having zero mean. As regard the value of σa in (8), we suggest to use

σa ≈ (1 + ν/100)σ0,

where (1 + ν/100) indicates a perturbation (depending on the value of ν)
of σ0, which denotes the optimal value to the problem of minimizing the
variance of the errors up to time T
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min
a1,...,aT

1

T − p

T∑
t=p+1

a2t = min
c,θ1,...,θp

1

T − p

T∑
t=p+1

(
Xt − c−

p∑
k=1

θkXt−k

)2

. (9)

Consider now the constraint (5). We can proceed similarly as before and
substitute Γ2 by a certain perturbation of the minimum value attained by
the errors’ variance:

Γ2 ≈ (1 + β/100) γ2,

where γ2 is the optimal value of

min
c,θ1,...,θp,a1,...,aT+1

1

T − p

T∑
t=1

a2t (10)

s.t∣∣∣∣∣ 1

T − p

T∑
t=p+1

at

∣∣∣∣∣ ≤ Γ1 (11)

Xt = c+

p∑
k=1

θkXt−k + at, t = 2, ..., T. (12)

Finally, consider (7). The choice of ∆ is crucial, since it bounds the value
of the prediction error aT+1. Since the sequence {at, t > 0} is i.i.d, it seems
reasonable to relate ∆ with the values a1, a2, . . . , aT . Since problem (10)-(12)
returns the optimal c?, θ?1, . . . , θ

?
p for which the errors’ variance is minimum,

then it is straightforward to obtain the values a1, . . . , aT (by substituting
c?, θ?1, . . . , θ

?
p into (1)). Therefore, one possible choice of ∆ is the empirical

q−th quantile of the sample (a1, . . . , aT ), solution to problem (10)-(12), for
some value of q, large enough.

In conclusion, once the perturbation parameters ν and β are set, the
problems (9) and (10)-(12) are solved, and the values of σ0, γ2 and ∆ are
found, then the ARUS(p) optimization problem is rewritten as
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−∆ + min
c,θ1,...,θp

(
c+

p∑
k=1

θkXT+1−k

)
(13)

s.t∣∣∣∣∣ 1

T − p

(
T∑

t=p+1

Xt − c−
p∑

k=1

θkXt−k

)∣∣∣∣∣ ≤ Γ∗1(1 + ν/100)σ0
√
T − p

T − p
(14)

1

T − p

(
T∑

t=p+1

Xt − c−
p∑

k=1

θkXt−k

)2

≤ (1 + β/100)γ2 (15)

and similarly, the maximization problem is defined. Details on how to solve
(16)-(15) are given in Section 2.2.

Now we introduce a mild extension of the model above. In some real-
world situations, the nature of the time series requires to predict the value of
XT+1 within a specific interval. This is for example the case of rainfall data
and exchange rates, which take non-negative values, or unemployment rates
and diseases prevalence, which must lie in [0, 1] (see Carrizosa et al. (2013)).
Therefore, in such cases it seems natural to consider a modified version of
the ARUS(p) problem, in which the constraint

a ≤ XT+1 ≤ b

is added. The new problem will be called ARUS(p)[a,b] from now on.
Since the objective function of the original ARUS(p) minimization prob-

lem is convex, then it increases in all directions from the global minimum.
This implies that once the solution XT+1 is found, then the solution to the
ARUS(p)[a,b] is necessarily XT+1, if XT+1 ∈ [a, b], or on the contrary it
equals a (respectively b), if the objective function is increasing (respectively,
decreasing) in [a, b]. Finally, a similar reasoning applies to the case of the
ARUS(p) maximization problem, yielding the next proposition:

Proposition 1. The solution to the minimization ARUS(p)[a,b] is either the
solution of the original minimization problem ARUS(p), XT+1, either a or b.
An equivalent result is obtained for the ARUS(p)[a,b] maximization problem.

2.2 Solution to the ARUS(p) problem

The ARUS(p) problem defined by (3)-(7) is written in terms of a linear
objective function to be optimized in a convex region.
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The following result provides a re-formulation of (3)-(7) in such a way that
additional properties concerning its solutions are derived. In particular, a
closed-form solution for the ARUS(1) is obtained from the novel formulation.

Proposition 2. The minimization ARUS(p) problem defined by (3)-(7) is
equivalent to

−∆ + min

(
−
∑T

t=p+1 ϕt(θ)

T − p
−min

{
Γ1,
√

Γ2 −H(θ)
}

+

p∑
k=1

θkXT+1−k

)
s.t (16)

Γ2 −H(θ) ≥ 0, (17)

where θ = (θ1, . . . , θp), and ϕt(θ), H(θ) are defined as

ϕt(θ) =

p∑
k=1

θkXt−k −Xt,

H(θ) =
1

T − p

T∑
t=p+1

ϕt(θ)2 − 1

(T − p)2

(
T∑

t=p+1

ϕt(θ)

)2

.

Proof. Proof See Appendix A.

Proposition 3. Equations (16)-(17) define a convex optimization problem.

Proof. Proof See Appendix B.

The ARUS(p) problem as in (16)-(17) is a smooth convex optimization
problem to be solved numerically. Moreover, the global optimum in the case
p = 1 can be obtained in closed form as the next result shows.

Theorem 1. For p = 1, the optimal solution to the minimization problem
defined by (16)-(17) is reached at one of these values for θ?1:

θ
?(1)
1 =

−C1,0 ±
√
C2
1,0 + V1

(
Γ2− V0 − Γ2

1

)
−V1

, (18)

θ
?(2)
1 =

−C1,0 ±
√
C2
1,0 + V1 (Γ2− V0)

−V1
, (19)

θ
?(3)
1 =

−C1,0(V1 + a2)±
√
C2
1,0(V1 + a2)2 + a2V1(V1 + a2) (Γ2− V0 − C1,0)

−V1
,

(20)
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where
Vk = var

(
Xk
)
, Ck,h = cov

(
Xk, Xh

)
(21)

respectively denote the variance of Xk and covariance matrix between Xk and
X i where

Xk = (Xp+1−k . . . , XT−k) , (22)

and a =
−1

T − 1

T∑
t=2

Xt−1 +XT .

Proof. Proof See Appendix C.

3 Solution to the robust newsvendor model

with autoregressive demand

Once developed the robust forecasting method for autoregressive processes,
a prediction interval for the demand is obtained. The worst case scenario for
the newsvendor with no shortage costs takes place when the demand reaches
its lower value. Hence the optimal robust solution for the newsvendor prob-
lem with autoregressive demand is the lower extreme of the prediction in-
terval obtained with the robust forecasting method. Therefore, as developed
in Section 2.2, we obtain a closed expression for the optimal solution of our
robust newsvendor problem when p = 1. For greater values of p the opti-
mal solutions are calculated numerically, although obtaining highly accurate
results due to problem convexity properties.

The robust forecasting method accomplishes the task of determining a
prediction interval for the demand, providing the optimal solution for the
worst case approach. However, negative solutions may be obtained if the
plain ARUS(p) is applied, thus a non-negativity constraint must be added
to properly fits the demand prediction. Hence, the ARUS(p)[0,+∞) would
properly address the newsvendor problem with autoregressive demand as it
will provide the optimal solution in the worst case scenario while assuring
feasibility for the demand. Summarizing, the optimal solution for the robust
newsvendor problem with autoregressive demand is the value obtained by
minimizing the ARUS(p)[0,+∞) problem defined in Section 2.

In order to illustrate the performance of the presented robust AR(p) fore-
casting method in the context of the newsvendor problem with autoregres-
sive demand, the proposed approach will be compared with two classic ap-
proaches, which will be called static and AR(p). The so-called static method
is based on the classical newsvendor approach and the second one is derived
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from basic autoregressive forecasting method, briefly introduced at the be-
ginning of Section 2. Now in Section 3.1 we are going to accommodate those
approaches to the newsvendor problem so as to be able to apply them later to
some numerical experiments. In the first approach, the demand distribution
will be unknown and estimated from the sample observations (assumed to
be independent), as in the second approach normality over the error termns
will be assumed.

3.1 Benchmark methods versus the robust approach

In this section we describe in detail both the benchmark approaches (static
and AR(p)) as well as the way to apply the ARUS(p) model to the newsven-
dor problem.

If the demand distribution F were known, then the optimal quantity
Q?
s would be given by a specific quantile of the distribution function, which

depends on the cost (c) and sale prices (v) as follows:

Q?
s = F−1

(
1− c

v

)
In practice the distribution of the demand is unknown and therefore in the

static approach, an estimation of the distribution function must be employed.
Usually, the empirical distribution function F̂ , which converges to the true
cdf F for a large enough sample, is considered. Note that under this approach
the temporal dependence in the data is ignored.

In the case of the classical AR(p) approach, we saw in Section 2 that the
forecast was assumed to follow a normal distribution. Therefore, the optimal
solution would be

Q?
AR(p) = Φ−1

(X̂T+1,σa)

(
1− c

v

)
where Φ−1

(X̂T+1,σa)
is the inverse cdf of a normal distribution with mean X̂T+1

and standard deviation σa. Since this approach may lead to negative solu-
tions and the demand always takes non-negative values, the quantity Q? =

max
{

0, Q∗AR(p)

}
will be considered instead.

Because of the same reason, as an alternative to the ARUS(p) problem
(Equations 3-7) we will focus on the ARUS(p)[0,+∞) problem defined in Sec-
tion 2, whose optimal solution is

Q∗T+1 = max
{

0, Q̂T+1

}
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Q̂T+1 being the solution of the minimization ARUS(p) problem. Consider
the ARUS(p) constraint (7), which bounds by ∆ the absolute value of the
(T + 1)-th error term. In the context of the newsvendor problem it seems

reasonable to relate the value of ∆ to the ratio
c

v
, which is a measure of the

decision maker’s risk aversion. From Schweitzer and Cachon (2000), in the

case of high profit products (that is,
c

v
≤ 0.5), risk aversion may be reduced

by allowing the decision maker to buy more items. This implies that Q̂T+1 is
allowed to be higher, or, in other words, the length of the prediction interval
is permitted to be smaller, which may be obtained by reducing the value
of ∆. Thus, in the context of the newsvendor problem, it makes sense to

choose ∆ as the empirical
c

v
-th quantile of the sample (a1, . . . , aT ), although

other choices of ∆, depending on the decision’s maker criterion, may be

sensible too. After some testing, we have chosen the
( c
v

)2
-th quantile of

(a1, . . . , aT ) under three types of profit products, namely, low-
( c
v

= 0.75
)

,

neutral-
( c
v

= 0.5
)

, and high-profit
( c
v

= 0.25
)

products.

3.2 Numerical illustrations

Now we are going to test the performance of our approach against those pro-
posed in Section 3.1. To make the results as complete as possible we have
checked the obtained average revenue and small quantiles for a large num-
ber of simulated data sets with different properties, such as the correlation,
distribution of errors or seasonality. To further explore the behavior of our
approach, different values of p have been considered to generate possibly pe-
riodic AR(p) processes, but only results for p = 1 are included here as the
same performance was observed for the other cases tested.

3.2.1 Synthetic data generation and experiments design

In this work the performance of the robust AR(p) forecasting method is
illustrated by different simulational experiments, for which samples of the
AR(p) process (representing the demand series) are artificially generated. In
this section we describe how the synthetic AR(p) data have been generated,
and we specify the choice of parameters of our model.

We have generated the demand series {Dt, t > 0} following an AR(p)
process as in (1). Three different distributions for the error terms were tested
in our experiments, all of them chosen so as to generate non-negative demand
series. First, at ∼ N(4, 1); also, we found of interest to check the behavior
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of the methods when heavy-tails are incorporated in the generator model, as
done in Huh et al. (2011). They choose Pareto and Lognormal distributions
to check the performance of their inventory approach under samples of time-
independent demand generated with heavy-tailed distributions. Therefore,
we also set at ∼ LN(0, 3) and at ∼ Par(1, 1), where LN and Par denote the
standard Lognormal and Pareto distributions.

A different aspect to be considered when simulating the data is the
strength of the temporal dependence. In our experiments, two values of
θ were set. Note that for p = 1 the coefficient θ1 represent the lag−1 auto-
correlation coefficient thus, in order to test the methods on highly and low
correlated time series, θ = θ1 = 0.9 and θ = θ1 = 0.5 were fixed. Figure 2
illustrate the demand time series generated with the different values of the
correlation and errors distributions. As mentioned before, other values of p
have been tested with different values of θ but the conclusions obtained were
analogous to those for p = 1.
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Figure 2: Examples of high and low correlated autoregressive demands gen-
erated with errors following N(4, 1), LN(0, 3) and Par(1, 1).
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Finally, as commented in the previous section, the risk seeker strategy

where ∆ is the
( c
v

)2
-th quantile of (a1, . . . , aT ), has been adopted under

three types of profit products:
c

v
∈ {0.75, 0.5, 0.25}, representing low-,

neutral- and high-profit products, respectively. The perturbation parame-
ters β and ν of the ARUS(p) approach were both set to 5, allowing therefore
a 5% perturbation over the minimum variance and standard deviation, re-
spectively. The parameter Γ∗1 was set as the 0.95 quantile of the standard
normal distribution following the reasoning of Bandi and Bertsimas (2012).

A total of 1000 series of length T + 1 = 1000 were generated for each θ
and each error’s probability distribution. The first T = 999 values have been
used as train set in order to estimate the parameters of the inventory policies
proposed in Section 3.1, and the remaining value t = 1000 has been used
as validation set. Therefore, the next process has been followed in order to
calculate the revenue of the different approaches:

1. Determine the optimal quantity of products to buy for instant T + 1
Q? having available the demand historical records for t = 1, ..., T

2. The demand in instant T + 1 is realized, and the revenue is calculated
by using the following expression:

R(Q) = min {Q,DT+1} −
( c
v

)
Q.

3.2.2 Results

The results obtained are illustrated by Tables 1-2, and Figures 3-7. Tables
1-2 show both the average revenue and the frequency of losses for the differ-
ent approaches (namely, static, classic AR(1) prediction method, and robust
ARUS(1) method) under three different statistical distributions for the er-
ror terms (Par(1, 1), LN(0, 3) and N(4, 1)). In Table 1 a higher level of
dependence than in Table 2 (θ = 0.9 versus θ = 0.5) is considered.
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θ = 0.9 Par(1, 1) LN(0, 3) N(4, 1)

c/v Method Avg. rev. % loss Avg. rev. %loss Avg. rev. %loss

Static 25.70 7.50 157.64 27.50 29.16 0.00

0.25 AR(1) 145.75 22.50 583.51 36.10 29.58 0.00

ARUS(1) 160.22 0.00 674.83 0.00 29.45 0.00

Static 13.01 12.60 65.09 23.50 19.02 0.00

0.50 AR(1) 118.60 4.50 490.27 10.90 19.52 0.00

ARUS(1) 105.22 0.00 437.73 0.00 19.49 0.00

Static 4.94 11.60 20.19 16.30 9.25 0.00

0.75 AR(1) 50.51 0.00 187.70 0.00 9.64 0.00

ARUS(1) 52.25 0.00 217.49 0.00 9.64 0.00

Table 1: Average revenue and frequency of losses obtained for high auto-
correlated series (θ = 0.9) under the three considered approaches (Static,
classic AR(1) forecasting method, and ARUS(1)), under Pareto, Lognormal
and normally distributed error terms.

From Table 1 several conclusions can be obtained. First, we point out
that under normally distributed errors, the three competing approaches per-
form similarly in terms of both the average revenue and frequency of losses.
However, significant differences are found when the errors follow a distribu-
tion with heavier tails. In both the Pareto and Lognormal cases, the robust
approach outperforms the other two, being the LN(0, 3) under neutral-profit
product (c/v = 0.5) an exception. In all cases, the static method, which does
not take into account the correlation of the data, presents the poorest perfor-
mance, especially when the average revenue is considered. The frequency of
losses is always zero under the robust approach, while it may be moderately
high for both the static approach and the classic AR(1) prediction method
when high-profit products are considered.
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θ = 0.5 Par(1, 1) LN(0, 3) N(4, 1)

c/v Method Avg. rev. % loss Avg. rev. %loss Avg. rev. %loss

Static 2.72 28.40 9.29 47.70 5.56 0.00

0.25 AR(1) -27.63 82.00 -145.12 87.80 5.61 0.00

ARUS(1) 7.23 0.10 33.08 0.00 5.46 0.00

Static 1.16 26.00 2.80 35.70 3.48 0.00

0.50 AR(1) 3.02 63.60 4.63 76.90 3.55 0.00

ARUS(1) 4.16 0.00 19.19 0.00 3.51 0.00

Static 0.35 17.70 0.61 21.90 1.60 19.00

0.75 AR(1) 2.29 0.00 9.31 0.00 1.66 9.00

ARUS(1) 1.96 0.00 9.39 0.00 1.65 5.00

Table 2: Average revenue and frequency of losses obtained for low autocorre-
lated series (θ = 0.5) under the three considered approaches (Static, classic
AR(1) forecasting method, and robust method), under Pareto, Lognormal
and normally distributed error terms.

Consider now Table 2, in which low correlated series are analyzed. Again
in this case the three methods behave similarly under theN(4, 1) distribution.
It is interesting to note however, how for the low-profit products case, all
approaches attain a fraction of runs with losses bigger than zero, being the
static approach the most extreme one. It is of interest to highlight the poor
performance of the AR(1) forecasting method in this case, under heavy-tailed
distributions for the errors. Note that for high-profit products, negative
average revenues are obtained, the frequency of losses being extraordinarily
high (this last phenomenon is also observed under neutral-profit products).
In this case, in which data are not highly correlated, the static approach does
not behave as poorly in the previous example.

In conclusion, it could be said that the robust autoregressive approach
is more stable than the other two approaches: it usually performs better or
equivalently to the other methods in terms of average revenue and always
outperforms them when minimizing the frequency of losses.

As an alternative illustration of the different prediction methods’ perfor-
mance in the least favorable scenarios, we provide Figures 3-5, which depict
the predicted empirical cdf of the revenue in the interval of probabilities
[0, 0.2]. In Figure 3 the error terms follow a N(4, 1) distribution, while in
Figures 4 and 5, the errors are assumed to be LN(0, 3) and Par(1, 1) dis-
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tributed, respectively. Time series with moderate and high autocorrelation
(θ = 0.5, θ = 0.9 respectively) are considered, and the results are given in
the left and right column. In addition, the top row of the figures presents the
results obtained under a high-profit product, while the central and bottom
panels are devoted the the neutral- and low-profit cases, respectively.
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Figure 3: Empirical cdf of the revenue under the static (dotted line), AR(1)
forecasting method (dashed line) and the ARUS(1) approach (solid line),
under normally distributed error terms.
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Figure 4: Empirical cdf of the revenue under the static (dotted line), AR(1)
forecasting method (dashed line) and the ARUS(1) approach (solid line),
under lognormally distributed error terms.
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Figure 5: Empirical cdf of the revenue under the static (dotted line), AR(1)
forecasting method (dashed line) and the ARUS(1) approach (solid line),
under error terms distributed as a Par(1, 1) distribution.
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Several conclusions can be obtained from Figures 3-5. First, it can be de-
duced that for demand with normally distributed error the classic AR(1) and
robust ARUS(1) approaches perform equivalently for highly correlated de-
mand (right column), while for demand with lower correlation the ARUS(1)
approach outperforms the classic AR(1). In both cases, the static approach
presents the poorest performance. Figures 4 and 5 illustrate the same phe-
nomena reported on Tables 1 and 2 for demand with heavy-tailed errors:
the higher the profit of a product is, the worse the classic AR(1) forecast-
ing method performs. Only in the case of low-profit products this approach
performs similarly to its robust counterpart, but it can observed how the per-
formance of the AR(1) approach approximates to that of the static one when
the profit increases. In order to clarify the comparison between the static
and ARUS(1) methods see Figures 6 and 7, which provide the same infor-
mation as Figures 4 and 5 for the high- and neutral-profit products without
considering the robust approach.
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Figure 6: Empirical cdf of the revenue under the static (dotted line) and the
ARUS(1) approach (solid line), under lognormally distributed error terms.
The values θ = 0.5 and θ = 0.9 are considered in the left and right columns.
High- and neutral-profit product strategies are represented in the top and
bottom panels, respectively.
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Figure 7: Empirical cdf of the revenue under the static (dotted line) and the
ARUS(1) approach (solid line), under error terms distributed as a Par(1, 1)
distribution. The values θ = 0.5 and θ = 0.9 are considered in the left and
right columns. High- and neutral-profit product strategies are represented in
the top and bottom panels, respectively.

4 Concluding remarks and extensions

In this paper we have considered a novel approach to the classic newsvendor
problem. First, we incorporate temporal dependence by assuming that the
demand follows an autoregressive process, and the forthcoming demand is
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to be forecasted from historical data. Second, the common assumption of
normally distributed error terms in AR models is not made in this work as
a distribution free counterpart is proposed. Moreover, a robust approach is
used, and a closed form of the optimal solution is derived for the case p = 1.
The performance of the proposed approach is compared to two traditional
competing methods. The results show that the robust method outperforms
the other approaches in terms of average revenue and obtains better results
in term of robustness. In very few occasions runs with losses are obtained.

Because of its tractability and simplicity, this paper considers the single-
period newsvendor problem as a test to illustrate the importance of accurate
predictions. We are aware of the interest of solving the multistage counter-
part, which can be used in a wider range of applications. The complications
that such a problem involves define a challenging task that we hope to ad-
dress in the future. Extensions to more general inventory models, such as
the multi-item problem, deserve further attention and careful analysis. In
the newsvendor context, shortage penalties and salvage values per unit can
be considered as possible extensions to include in the ARUS(p) approach
proposed here, as in the case of the multi-product SPP correlated demands
amongst items may be taken into account. Future prospects concerning this
work also include to formulate robust versions of more sophisticated time
series models.
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Appendix A. Proof of Proposition 2

First, we provide a lemma that will be necessary for the proof.

Lemma 1. If

1

T − p

T∑
t=p+1

(
c+

p∑
k=1

θkXt−k −Xt

)2

≤ Γ2, for all c, θ1, . . . , θp,

then Γ2 −H(θ) ≥ 0.
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Proof. Proof Note first that if Γ2 −H(θ) < 0 then

Γ2 −
1

T − p

T∑
t=p+1

ϕ2
t <

−1

(T − p)2

(
T∑

t=p+1

ϕt

)2

(23)

and
1

T − p

T∑
t=p+1

(c+ ϕt)
2 = c2 +

2c

T − p

T∑
t=p+1

ϕt +
1

T − p

T∑
t=p+1

ϕ2
t

Assume there exists (c,θ) such that Γ2−H(θ) < 0 and
1

T − p
∑

(c+ϕt)
2 ≤

Γ2. Then,

c2 +
2c

T − p

T∑
t=p+1

ϕt ≤ Γ2 −
1

T − p

T∑
t=p+1

ϕ2
t

but from (23)

c2 +
2c

T − p

T∑
t=p+1

ϕt < −
1

(T − p)2

(
T∑

t=p+1

ϕt

)2

,

and therefore(
c+

1

T − p

T∑
t=p+1

ϕt

)2

= c2 +
2c

T − p

T∑
t=p+1

ϕt +
1

(T − p)2

(
T∑

t=p+1

ϕt

)2

< 0

which is a contradiction.

Proof of Proposition 2: From (4),

c ≤ U1(θ) = Γ1 −
1

T − p

T∑
t=p+1

ϕt(θ),

c ≥ L1(θ) = −Γ1 −
1

T − p

T∑
t=p+1

ϕt(θ).

and (5) implies

c ≤ U2(θ) =
−1

T − p

T∑
t=p+1

ϕt(θ) +
√

Γ2 −H(θ),
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c ≥ L2(θ) =
−1

T − p

T∑
t=p+1

ϕt(θ)−
√

Γ2 −H(θ),

Then given a fixed θ, (4)-(6) is written as:

−∆ + min

(
c+

p∑
k=1

θkXT+1−k

)

s.t


c ≥ max {L1(θ), L2(θ)}
c ≤ min {U1(θ), U2(θ)}√

Γ2 −H(θ) ≥ 0

,

or equivalently as

−∆ + min

(
max {L1(θ), L2(θ)}+

p∑
k=1

θkXT+1−k

)

s.t
{ √

Γ2 −H(θ) ≥ 0

which is equivalent to (16)-(17). �

Appendix B. Proof of Proposition 3

We provide two lemmas needed for the proof of Proposition 3.

Lemma 2. The function H(θ) is convex.

Proof. Proof Since H(θ) is an estimator of the variance of ϕ(θ), it can be
rewritten as

H(θ) =
1

T − p

T∑
t=p+1

(
ϕt(θ)− 1

(T − p)

T∑
t=p+1

ϕt(θ)

)2

which is a convex function on θ since each term is the square of an affine
function.

Lemma 3. The feasible region of the problem defined by (16)-(17) is convex.
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Proof. Proof The feasible region of the problem defined by (16)-(17) is the
set F = {θ s.t. Γ2 −H(θ) ≥ 0}. After some algebra, we have

Γ2 −H(θ) = Γ2 −
1

T − p

T∑
t=p+1

(
p∑

k=1

θkXt−k

)2

+
2

T − p

T∑
t=p+1

p∑
k=1

θkXt−kXt −

− 1

T − p

T∑
t=‘+1

X2
t +

1

(T − p)2

(
T∑

t=p+1

p∑
k=1

θkXt−k

)2

From the definitions in (21) it can be seen that

Γ2 −H(θ) = Γ2 −
p∑

k=1

θ2kVk − 2

p∑
k=1

θk

p∑
r=k+1

θrCk,r + 2

p∑
k=1

θkCk,0 − V0 (24)

Since by Lemma 2, H is convex, the region defined by Γ2 − H(θ) ≥ 0 is
convex.

Proof of Proposition 3: Since the feasible region is convex then, it
suffices to prove that the objective function is convex too. From Lemma 2,
H(θ) is convex and therefore

−min
{

Γ1,
√

Γ2 −H(θ)
}

is also convex. On the other hand,
T∑

t=p+1

ϕt(θ) is linear on θ, thus

−∆ + min
θ

(
−
∑T

t=p+1 ϕt(θ)

T − p
−min

{
Γ1,
√

Γ2 −H(θ)
}

+

p∑
k=1

θkXT+1−k

)

is convex. �

Appendix C. Proof of Theorem 1

Two main cases may be distinguished

1. Either min
{

Γ1,
√

Γ2 −H(θ1)
}

= Γ1,

2. or min
{

Γ1,
√

Γ2 −H(θ1)
}

=
√

Γ2 −H(θ1)
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Consider the first case. Then, the problem to be solved is written as

−∆− Γ1 + min


−

T∑
t=p+1

ϕt(θ1)

T − p
+

p∑
k=1

θkXT+1−k



s.t

{
Γ2 −H(θ1) ≥ 0√

Γ2 −H(θ1) ≥ Γ1

Note that the first constraint is redundant, as Γ1 is supposed to be positive.
Since the objective function is linear on θ1, the optimum is reached at the
frontier of the feasible region

F =
{
θ1 s.t. Γ1 =

√
Γ2 −H (θ1)

}
.

Consider (24) with p = 1. Then

Γ2 − Γ2
1 −H(θ1) = −θ21var(X1) + 2θ1cov(X1, X0) + (Γ2 − var(X0)− Γ2

1)

which is equal to zero if θ1 = θ
?(1)
1 as in (18).

Assume now that min
{

Γ1,
√

Γ2 −H(θ1)
}

=
√

Γ2 −H(θ1). Then the

objective function to be minimized can be written as

A2(θ1) = −∆ +
−1

T − 1

T∑
t=2

(θ1Xt−1 −Xt)−
√

Γ2 −H(θ1) + θ1XT ,

and let F2(θ1) = A2(θ1) + ∆. This function is convex and therefore, the opti-
mal solution for the unconstrained problem is reached when the derivatives
are null, where

dF2(θ1)

dθ1
= a+

1

T − 1

∑T
t=2 (θ1Xt−1 −Xt) bt√
Γ2 −H(θ1)

,

and where a =
−1

T − 1

T∑
t=2

Xt−1 and bt = Xt−1 −
1

T − 1

T∑
t0=2

Xt0−1. Note that

dF2(θ1)

dθ1
exists if and only if Γ2−H(θ1) > 0. Thus, the optimal θ1 is either the

one which the partial derivative of F2 in the feasible region of the considered
problem is zero or it is found at the frontier of such feasible region. Three
cases may therefore be considered
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(2.1) The minimun is reached at Γ2 −H(θ1) = 0,

(2.2) The minimun is reached at
√

Γ2 −H(θ1) = Γ1,

(2.3) The optimal θ1 is the one such that
∂F2(θ1)

∂θ1
= 0.

Case (2.2) has been already solved. Consider the case (2.1). Then, after
substituting p = 1 in (24), expression (19) is obtained. Finally, the problem
to be solved for the case (2.3) turns into

−∆ + minF2(θ1)

s.t

{
Γ2 −H(θ1) > 0√

Γ2 −H(θ1) ≤ Γ1

(25)

An optimal solution to (25) is obtained in the case (2.3) if there exists θ1

such that
dF2(θ1)

dθ1
= 0 , which in addition satisfies the constraints of problem

(25). Such value θ1 is obtained by

(
−a
√

Γ2 −H(θ1)
)2

=

(
1

T − 1

T∑
t=2

ϕt(θ1)bt

)2

.

After some algebra, the right term is expressed as:

1

(T − 1)2

(
T∑
t=2

ϕt(θ1)bt

)2

=
(
cov
(
θ1X

1, X1
)
− cov

(
X0, X1

))2
,

from which the next quadratic function is obtained:

θ21(V
2
1 + a2V1)− 2θ1C1,0(V1 + a2)− a2(Γ2 − V0 − C1,0), (26)

which is equal to zero if and only if θ1 = θ
?(3)
1 as in the expression (20). �
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