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Abstract

Feature Selection (FS) is a crucial procedure in Data Science tasks such as

Classification, since it identifies the relevant variables, making thus the classifi-

cation procedures more interpretable and more effective by reducing noise and

data overfit. The relevance of features in a classification procedure is linked

to the fact that misclassifications costs are frequently asymmetric, since false

positive and false negative cases may have very different consequences. How-

ever, off-the-shelf FS procedures seldom take into account such cost-sensitivity

of errors.

In this paper we propose a mathematical-optimization-based FS procedure

embedded in one of the most popular classification procedures, namely, Support

Vector Machines (SVM), accommodating asymmetric misclassification costs.

The key idea is to replace the traditional margin maximization by minimizing

the number of features selected, but imposing upper bounds on the false positive

and negative rates. The problem is written as an integer linear problem plus a

quadratic convex problem for SVM with both linear and radial kernels.

The reported numerical experience demonstrates the usefulness of the pro-

posed FS procedure. Indeed, our results on benchmark data sets show that a
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substantial decrease of the number of features is obtained, whilst the desired

trade-off between false positive and false negative rates is achieved.

Keywords: Classification, Data Science, Support Vector Machines, Feature

Selection, Integer Programming, Sparsity

1. Introduction

Supervised Classification is one of the most important tasks in Data Science,

e.g. [1, 2], full of challenges from a Mathematical Optimization perspective, e.g.

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

In its most basic version, we are given a set I of individuals, each represented5

by a vector (xi, yi), where xi ∈ RN is the so-called feature vector, and yi ∈

C = {−1, 1} is the membership of individual i. A classifier Ψ, i.e., a function

Ψ : RN −→ C, is sought to assign labels c ∈ C to incoming individuals for

which the feature vector x is known but the label y is unknown and estimated

through Ψ(x).10

The different classification procedures differ in the way the classifier Ψ is

obtained from the data set I. A frequent approach consists of reducing the

search of the classifier to the resolution of an optimization problem, see [9].

This is the case, among many others, of the state-of-the-art classifier known as

Support Vector Machines (SVM), [9, 18, 19, 20], addressed in this paper.15

In SVM with linear kernel, Ψ takes the form

Ψ(x) =

 1, if w>x+ β ≥ 0

−1, else,
(1)

where w ∈ RN and β ∈ R are obtained as the optimal solution of the following

convex quadratic programming formulation with linear constraints

minw,β,ξ w>w + C
∑
i∈I ξi

s.t. yi(w
>xi + β) ≥ 1− ξi, i ∈ I

ξi ≥ 0 i ∈ I.

(2)
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Here C > 0 is the regularization parameter, which needs to be tuned, and ξi ≥ 0

is a penalty associated to misclassifying individual i in the so-called training20

sample I.

An apparently innocent extension of (1) is given by

Ψ(x) =

 1, if w>φ(x) + β ≥ 0

−1, else,
(3)

where φ : RN → H maps the original N features into a vector space of higher di-

mension, and w and β are obtained by solving an optimization problem formally

identical to (2), but taking place in the space H instead of RN25

minw,β,ξ w>w + C
∑
i∈I ξi

s.t. yi(w
>φ(xi) + β) ≥ 1− ξi, i ∈ I

ξi ≥ 0 i ∈ I.

(4)

In this case, the classifier is usually obtained by solving, instead of (4), its dual,

maxα
∑
i∈I αi −

1
2

∑
i,j∈I αiyiαjyjK(xi, xj)

s.t.
∑
i∈I αiyi = 0

0 ≤ αi ≤ C
2 , i ∈ I,

(5)

where K(x, x′) = φ(x)>φ(x′) is the so-called kernel function. From the op-

timal solution to (5) and taking into account the complementarity slackness

conditions, w and β in (3) are obtained. In particular,30

w>w =
∑
i,j∈I

αiyiαjyjK(xi, xj), (6)

w>φ(x) =
∑
i∈I

αiyiK(xi, x). (7)

See e.g. [9, 18, 19, 20] for details.

The classifier uses all the features involved in the problem, both in (1) and

(3), which may be rather problematic if the dimension N of the data set is large,

since it will be hard to identify which features are significant for classification

purposes. It is then advisable to perform Feature Selection (FS), [21, 22, 23,35
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24, 25, 26, 27, 28, 29, 30], in order to reduce the set of features and obtain an

appropriate trade-off between classification accuracy and sparsity.

A mountain of different FS procedures are found in the literature, some inde-

pendent of the classification procedure (FS is performed in advance, based e.g.

on the correlation between each feature and the label) and others embedded in40

the classification procedure. The latter is the approach considered in this paper,

since we aim to obtain an SVM-based classifier, and, at the same time, perform

the selection of the features. The core idea is the optimization problem to be

solved: instead of maximizing the margin, as in the traditional SVM, we seek

the classifier with lowest number of features, but without damaging too much45

the original performance. In order to be able to control the classifier’s perfor-

mance, we will make use of constraints as in [31]. Specifically, the formulation

of the constrained SVM with linear kernel is

minw,β,ξ w>w + C
∑
i∈I ξi

s.t. yi(w
>xi + β) ≥ 1− ξi, i ∈ I

0 ≤ ξi ≤ L(1− ζi) i ∈ I

µ(ζ)` ≥ λ` ` ∈ L

ζi ∈ {0, 1} i ∈ I.

(8)

In essence, this is simply the formulation for the SVM with linear kernel, to

which performance constraints (µ(ζ)` ≥ λ`) have been added, see [31] for the50

details. Its (partial) dual formulation is

minα,β,ξ,ζ
∑
i,j∈I

αiyiαjyjK(xi, xj) + C
∑
i∈I ξi

s.t. yi(
∑
j∈I

αjyjK(xj , xi) + β) ≥ 1− ξi, i ∈ I∑
i∈I

αiyi = 0

0 ≤ αi ≤ C/2 i ∈ I

0 ≤ ξi ≤ L(1− ζi) i ∈ I

µ(ζ)` ≥ λ` ` ∈ L

ζi ∈ {0, 1} i ∈ I.

(9)

As before, this is similar to the standard partial dual formulation of the SVM
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with general kernel and constraints in the performance measures, as in (8). For

more information about how formulation (9) is obtained, the reader is referred to

the Appendix. Note that, while mathematical optimization problems addressed55

in the statistical literature are, traditionally, as (2) or (5), nonlinear programs

in continuous variables, our approach involves integer variables, which define

harder optimization problems. However, Integer Programming has shown to

be rather competitive thanks to the impressive advances in (nonlinear) integer

programming, as demonstrated in recent papers addressing different topics in60

data analysis, [32, 33, 24, 7, 8, 34].

The remainder of the paper is structured as follows. In Section 2 we present

the new FS methodology for SVM, by proposing mathematical optimization

programs. For either linear or nonlinear kernels, we reduce the problem to

solving a standard linear integer program plus, eventually, a quadratic convex65

problem. Our FS approach is empirically tested. In Section 3 we describe how

the different experiments have been carried out. Then, the results of those ex-

periments are shown in Section 4. Comparisons between the use of linear and

radial kernels, and between the standard linear SVM with and without embed-

ded FS are provided. The paper ends with conclusions and possible extensions70

in Section 5.

2. Cost-sensitive Feature Selection

In this section we present a novel linear formulation for SVM where classi-

fication costs are modeled via certain constraints, and where, in addition, a FS

approach is embedded in such a way that only the relevant features are consid-75

ered. In Section 2.2 the FS approach using a linear or an arbitrary kernel is

addressed.

In order to cope with classification costs, first we recall some performance

measures, namely,

• TPR (True Positive Rate): P (w>X + β > 0|Y = +1)80

• TNR (True Negative Rate): P (w>X + β < 0|Y = −1)

5



• Acc (Accuracy): P (Y (w>X + β) > 0).

The objective is to classify using a reduced set of features in such a way that

certain constraints over the performance, such as TPR ≥ λ1 or TNR ≥ λ−1

(for threshold values λ1, λ−1 ∈ [0, 1]), are fulfilled.85

Note that the pair (X,Y ) is a random vector (with unknown distribution)

from which a sample {(xi, yi)}i∈I is generated. This implies that TPR and

TNR are statistics and therefore, they should be estimated from sample data.

This leads to the empirical constraints T̂PR ≥ λ∗1 and T̂NR ≥ λ∗−1, for λ∗1 ≥ λ1
and λ∗−1 ≥ λ−1, where the performance measures are replaced by their sample90

estimates. Two possible choices, which shall be explored in this work, are

λ∗1 = λ1

and

λ∗−1 = λ−1,

(10)

or the more conservative approach based on Hoeffding inequality,

λ∗1 = λ1 +

√
− logα

2|I+|
and

λ∗−1 = λ−1 +

√
− logα

2|I−|
,

(11)

where α is the significance level for the hypothesis test whose null hypothesis is

either TPR ≤ λ1 or TNR ≤ λ−1. See [31] for more details.

Note that it is straightforward to extend our results to the case in which95

measurement costs are associated with the features, as in e.g. [35], and then

the minimum-cost feature set is sought instead.

2.1. The cost-sensitive FS procedure

Assume that we have a linear kernel, i.e., K(x, x′) = x>x′, and thus the

SVM with all features is obtained by solving (2). We state the feature selec-100

tion problem as a Mixed Integer Linear Program. Consider an auxiliary vari-

able ζi that takes the value 1 if record i is correctly classified and is equal to

0 otherwise. Hence, estimates of TPR and TNR from sample I are given by
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T̂PR =
∑
i∈I ζi(1+yi)/

∑
i∈I(1 + yi) and T̂NR =

∑
i∈I ζi(1−yi)/

∑
i∈I(1− yi),

respectively. Associated with each feature k, 1 ≤ k ≤ N , we define the variable105

zk taking the value 1 if feature k is selected for classifying, and 0 otherwise.

Hence, the optimization problem that defines a linear classifier (hyperplane)

taking into account the classification rates and in which a FS procedure is inte-

grated is given by

minw,β,z,ζ

N∑
k=1

zk

s.t. yi(w
>xi + β) ≥ 1− L(1− ζi), ∀i ∈ I∑

i∈I ζi(1− yi) ≥ λ∗−1
∑
i∈I(1− yi)∑

i∈I ζi(1 + yi) ≥ λ∗1
∑
i∈I(1 + yi)

|wk| ≤Mzk ∀k ∈ 1, . . . , N

ζi ∈ {0, 1} ∀i ∈ I

zk ∈ {0, 1} ∀k ∈ 1, . . . , N

(P1)

where M and L are sufficiently large numbers.110

Let us discuss the rationality of the formulation (P1). The number of fea-

tures used for classifying is to be minimized in the objective. The first constraint

identifies which individuals are correctly classified, since, as soon as ζi = 1, the

score Ψ(xi) is forced to be Ψ(xi) ≥ 1 (if yi = 1) or Ψ(xi) ≤ −1 (if yi = −1).

Furthermore, the constant
∑
i∈I(1− yi) is equal to two times the cardinality of115

the set {i ∈ I : yi = −1}, whereas
∑
i∈I ζi(1− yi) yields two times the number

of individuals correctly classified in the class −1. Hence, the second and third

constraints force respectively the fraction of individuals with label yi = −1 (re-

spectively, yi = 1) correctly classified to be at least λ∗−1 (respectively, at least

λ∗1). Finally, the fourth constraint forces to select those features k with zk = 1.120

Note that an SVM classifier has not been built yet, since the margin has

not been maximized. The next section shall address such problem by using the

SVM either with the linear kernel or with an arbitrary one.

2.2. Cost-sensitive sparse SVMs: linear vs arbitrary kernels

Here we explain how the sparse SVM is built. Let us first consider the case
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of the classifier with linear kernel. Hence, the sparse SVM that controls the

classification rates is formulated as

minω,β,ξ,z
N∑
j=1

w2
j zj + C

∑
i∈I ξi

s.t. yi(
∑N
j=1 ωjzjxij + β) ≥ 1− ξi, ∀i ∈ I

0 ≤ ξi ≤M(1− ζi) ∀i ∈ I

ζi ∈ {0, 1} ∀i ∈ I∑
i∈I ζi(1− yi) ≥ λ∗−1

∑
i∈I(1− yi)∑

i∈I ζi(1 + yi) ≥ λ∗1
∑
i∈I(1 + yi)

(P2)

Note that (P2) is defined similarly as a standard linear SVM optimization125

problem. The slight difference is that in (P2) only the variables selected by

the FS approach described in Section 2.1. are considered. This means that

the values of z in (P2) are those obtained in problem (P1). Note too that the

constraints concerning the performance measures are also added here.

Now, assume the SVM classifier has the form (3), and an arbitrary kernel

function K(x, x′) = φ(x)>φ(x′) is used instead of the linear one. See e.g. [9,

18, 19, 20] for details. Although formally similar, the case of an arbitrary kernel

K implies that, if an FS procedure as (P1) is desired, nonlinear constraints are

involved and thus the optimization problem is harder to solve. For this reason,

instead of coping with such hard problem, we propose an alternative strategy:

first, (P1) is solved (as before), and then the SVM classifier (with the selected

kernel) is built, using only the features selected in the problem described in

Section 2.1. In what follows we focus on the radial kernel, even though one

can consider any arbitrary kernel K. First, we define the binary variables z

identifying the features which are selected for classifying. The choice of the

features, identified with the vector z, leads to the kernel Kz, defined as

Kz(x, x
′) = exp

(
−γ

(
N∑
k=1

zk(x(k) − x′(k))2
))

,

where x(k) denotes the k-th component of vector x.130
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For z (and thus Kz) fixed, the aim is to solve (4), but replacing the terms

w>w and w>φ(xi), respectively, by the expressions (6) and (7), apart from

adding the constraints related to the performance measurements, as described

in [31]. Therefore, the cost-sensitive sparse SVM with an arbitrary kernel K is135

defined (once z is fixed) as

minα,ξ,β,ζ,z
∑
i,j∈I αiyiαjyjKz(xi, xj) + C

∑
i∈I ξi

s.t. yi(
∑
j∈I αjyjKz(xi, xj) + β) ≥ 1− ξi, ∀i ∈ I

0 ≤ ξi ≤M(1− ζi) ∀i ∈ I∑
i∈I αiyi = 0

0 ≤ αi ≤ C/2 ∀i ∈ I∑
i∈I

ζi(1− yi) ≥ λ∗−1
∑
i∈I

(1− yi)∑
i∈I

ζi(1 + yi) ≥ λ∗1
∑
i∈I

(1 + yi)

ζi ∈ {0, 1} ∀i ∈ I

(P3)

Let us discuss the formulation (P3). The set of features is fixed through

z. The objective function, the first, third and fourth constraints are the usual

ones in SVM. The second constraint together with the fifth, sixth and seventh

constraints force some samples to be correctly classified, as in (P1).140

3. Experiment Description

In this section, the solutions of the cost-sensitive sparse SVM with linear

kernel (problem (P2)) are compared to those under the radial kernel (problem

(P3)), where, as it was described in the previous section, the variables z in both

(P2) and (P3) are the solutions of the FS problem formulated by (P1). Also,145

the solutions under the sparse methodology will be tested against the standard

linear SVM. Although it would be natural to compare the solutions of (P3) with

the solutions of a standard radial SVM, this comparison is not straightforward

since (P1) may become infeasible when the performance measures obtained with

the radial SVM are higher than those under the linear SVM.150
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Next, a description of how the experiments have been carried out is given.

In order to solve problems (P1), (P2) and (P3), the solver Gurobi, [36], and

its Python language interface, [37], are used. In order to implement these FS

procedures, a 10-fold cross-validation (CV), [38], is used. Also, depending on

whether the linear or the radial kernel is considered, a parameter C or a pair of155

parameters (C, γ) must be tuned. Hence, in either the first or in the second case,

C = γ = {2−5, 2−4, . . . , 24, 25} are considered. In addition, a time limit of 300

seconds is set, giving the solver enough time for finding (sub)optimal solutions.

Parameters M and L are set as 100. Finally, in order to get the best set of

parameters, another 10-fold CV is carried out and the best set of parameters160

selected is the one with highest accuracy in average.

For a better understanding, the whole procedure is summarized in Algo-

rithm 1.

4. Numerical Results

Here, the experimental results are presented. We have chosen the datasets165

wisconsin (Breast Cancer Wisconsin (Diagnostic) Data Set), votes (Congres-

sional Voting Records Data Set), nursery (Nursery Data Set), Australian

(Statlog (Australian Credit Approval) Data Set) and careval (Car Evaluation

Data Set), all well referenced and described with detail in [39]. First, a brief

data description is given in Section 4.1. Then, results under the linear kernel170

approach will be presented and discussed in Section 4.2. Finally, the case of the

radial kernel will be analyzed in Section 4.3.

Note that the main idea of a FS approach is to reduce the number of features

in such a way that the performance is not too affected. As we can control

the proportion of samples well classified, this is not a problematic issue. In175

fact, experiments are done so that new performance measurements will not

be 0.025 points lower than the originals (those obtained under the standard

version of the SVM with linear kernel). Using the notation as in [31] (where
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Algorithm 1: Pseudocode for general kernel approach.

1 for kf = 1,. . .,folds do

2 Split data (D) into “folds” subsets, D = {D1, . . . , Dfolds}

3 Set V alidation = Dkf and set I = D − {Dkf}

4 for each pair (C, gamma) do

5 for kf2 = 1,. . ., folds2 do

6 split D′ = D − {Dkf} into “folds2” subsets,

D′ = {D′1, . . . , D′folds2}

7 Set V alidation′ = D′kf2 and set I ′ = D′ − {Dkf2}

8 Run (P1) over I, and select the relevant features.

9 Run (P2) or (P3) over I with the corresponding modified

kernel.

10 Validate over V alidation′, getting the accuracy (acc[kf2])

11 end

12 Calculate the average accuracies (
∑
kf2 acc[kf2])/folds2

13 if acc[kf2] ≥ bestacc then

14 Set bestacc = acc[kf2], bestgamma = gamma and bestC = C

15 end

16 end

17 Run (P1) over I, and select the relevant features.

18 Run (P2) or (P3) with the corresponding modified kernel and the

parameters bestgamma and bestC, using I.

19 Validate over V alidation, getting the accuracy (acc2[kf ]), and the

correct classification probabilities (TPR[kf ], TNR[kf ]) as well as

the number of features selected Z[kf ] =
∑N
k=1 z[k].

20 end

21 Calculate and display the average performance measures:

(
∑
kf acc2[k2])/folds, (

∑
kf TPR[kf ])/folds, (

∑
kf TNR[kf ])/folds

and (
∑
kf Z[kf ])/folds

11



TNR and TPR are the true negative and true positive rates, and TNR0 and

TPR0 are their obtained values under the standard SVM with linear kernel180

on a validation sample), TNR ≥ λ−1 = min{1, TNR0 − 0.025} and TPR ≥

λ1 = min{1, TPR0 − 0.025} are desired. For both linear and radial cases we

have considered the two possible selection of the thresholds, defined by (10) and

(11).

4.1. Data description185

The performance of these novel approaches is illustrated using five real-life

datasets from the UCI Repository, [39]. Positive label will be assigned to the ma-

jority class in 2-class datasets. In addition, multiclass datasets are transformed

into 2-class ones, by giving positive label to the largest class and negative la-

bels to the remaining samples. Also, categorical variables are transformed into190

dummy variables, i.e, if a categorical variable with ν levels is present, it will

be replaced by ν − 1 binary variables. A description of the datasets can be

found in Table 1. Such table is split in 4 columns. The first shows the name of

the dataset. The total number of samples of the dataset is given in the second

one. The number of variables considered, and the number (and percentage) of195

positive samples in the dataset, are given in the two last columns.

Name |Ω| V |Ω+| (%)

wisconsin 569 30 357 (62.7 %)

votes 435 32 267 (61.4 %)

nursery 12960 19 4320 (33.3 %)

Australian 690 34 383 (55.5 %)

careval 1728 15 1210 (70.023 %)

Table 1: Details concerning the implementation of the CSVM for the considered datasets.

4.2. Results under the cost-sensitive sparse SVM with linear kernel

As commented before, two types of results will be shown here, as in the

following subsection. The first one will correspond to the results when Hoeffding
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Inequality is not considered (10), whereas the other one consists on the values200

obtained when Hoeffding is used (11). The results will show how the first option

leads to more sparsity while the second choice implies a better predictive power.

Let us start with the first case, summarized in Table 2.

The first column of Table 2 gives the name of the dataset used. Then, the

second and third columns show, respectively, the performance measures for the205

standard SVM (using the linear kernel) and the proposed cost-sensitive sparse

methodology. Such columns are split into two subcolumns: the first one shows

the average values and the second one the standard deviations. The last column

reports the feature reduction, by indicating the original and selected (average)

number of variables. From the table, it can be concluded that the approach210

with a linear kernel works well in general. In the case of wisconsin, the TPR

has desirable values, since it only differentiates -0.019 points from the original.

However, in the case of the accuracy and TNR, the loss is bigger than 0.025

points. This is due mainly to two aspects: first, the constraints are forced

for the training sample while the performance is calculated using a validation215

sample. Second, since the thresholds are considered as λ∗1 = λ1, λ∗−1 = λ−1, this

implies we are not much restrictive as if λ∗1 > λ1 (λ∗−1 > λ−1) were required.

Nevertheless, the new TNR value is only 0.038 points smaller than the original,

and the reduction of features is significant since only two variables out of 30 are

used. Also, in votes the features are significantly reduced and the most affected220

performance measure is the TPR, which decreases 0.027 points, which makes

the accuracy smaller. However, the value on the TNR is increased. As happened

with wisconsin, the loss is due mainly to the two facts previously mentioned.

For nursery, an amazing reduction to only one feature is achieved, in addition

getting a perfect classification. This is explained as follows. As commented in225

Section 4.1, multiclass datasets are transformed into 2-class ones, and this is the

case, obtaining the classes “not recom” and “others”, which are the positive

and negative classes, respectively. In addition, one of the (categorical) features

in the data (which is the one selected by our procedure) completely determines

the class. In Australian, the total number of variables is also reduced to only230
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Table 2: Performance measures under the cost-sensitive sparse SVM with linear kernel and

λ∗1 = λ1, λ∗−1 = λ−1.

Name SVM FS Feature reduction

Mean Std Mean Std

wisconsin Acc 0.975 0.021 0.947 0.025 30 → 2 (0 Std)

TPR 0.992 0.013 0.973 0.031

TNR 0.943 0.051 0.905 0.063

votes Acc 0.954 0.033 0.949 0.036 32 → 2 (0 Std)

TPR 0.955 0.038 0.928 0.059

TNR 0.947 0.059 0.979 0.036

nursery Acc 1 0 1 0 19 → 1 (0 Std)

TPR 1 0 1 0

TNR 1 0 1 0

Australian Acc 0.848 0.051 0.855 0.057 34 → 1 (0 Std)

TPR 0.798 0.083 0.801 0.087

TNR 0.912 0.05 0.926 0.041

careval Acc 0.956 0.017 0.946 0.019 15 → 9 (0 Std)

TPR 0.96 0.022 0.963 0.017

TNR 0.948 0.024 0.907 0.04
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Table 3: Performance measures under the cost-sensitive sparse SVM with linear kernel and

λ∗1 = λ1 +
√
− logα/(2|I1|), λ∗−1 = λ−1 +

√
− logα/(2|I−1|).

Name SVM FS Feature reduction

Mean Std Mean Std

wisconsin Acc 0.975 0.021 0.965 0.023 30 → 6.2 (0.919 Std)

TPR 0.992 0.013 0.975 0.023

TNR 0.943 0.051 0.947 0.048

votes Acc 0.954 0.033 0.954 0.033 32 → 9.3 (1.16 Std)

TPR 0.955 0.038 0.96 0.034

TNR 0.947 0.059 0.945 0.052

nursery Acc 1 0 1 0 19 → 1 (0 Std)

TPR 1 0 1 0

TNR 1 0 1 0

Australian Acc 0.848 0.051 0.837 0.057 34 → 5.75 (1.89 Std)

TPR 0.769 0.083 0.772 0.074

TNR 0.912 0.05 0.924 0.053

careval Acc 0.956 0.017 0.954 0.018 15 → 11 (0 Std)

TPR 0.96 0.022 0.962 0.018

TNR 0.948 0.024 0.935 0.039
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one, having similar performance measures values as in the standard SVM. In

fact, we obtain here even better results than under the original linear SVM.

If the variable selected with the algorithm is studied, one can observe that it

is a binary variable X, where the contingency table together with the class

variable is Table 4. Hence this variable is by itself a good predictor, as the FS235

procedure pointed out. In the case of careval, we got the smallest reduction in

the number of variables selected, maintaining the performance measures values

above the imposed thresholds.

X = 0 X = 1

Class + 306 77

Class − 23 284

Table 4: Contingency table of the feature selected in Australian.

Consider next the results shown by Table 3, for the case where we are restric-

tive regarding the performance values, that is, when λ∗1 = λ1 +
√
− logα/(2|I1|)240

and λ∗−1 = λ−1 +
√
− logα/(2|I−1|). From the table, it can be seen how this

approach works better concerning the performance measures, but achieves less

sparse solutions. For example, if we focus on wisconsin, as much the TNR

as the TPR and the accuracy, obtain the desired performance requirements.

However, only a reduction of variables of a fifth part is obtained. In the case of245

votes, an analogous result is obtained for the performance measures and only

a reduction in a third part of the variables is achieved. The same pattern as be-

fore is observed for nursery. For Australian, we obtain even an improvement

in all the three performance measures considered, reducing the number of fea-

tures to a fifth part. Finally, we get again in careval the smallest reduction in250

the number of variables selected, maintaining the performance measures values

above the thresholds imposed as before, but using a larger number of features.

4.3. Results under the cost-sensitive sparse SVM with radial kernel

The analogous results to those in Section 4.2 are presented here, for the

case of the radial kernel. However, only wisconsin, votes and Australian255
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datasets are used here. As shown by Tables 5 and 6 and similarly as occurred in

Section 4.2, the use of the threshold values obtained by the Hoeffding inequality

(as in (11)) lead to a lower level of sparsity, but also, to a higher predictive

power in general (particularly, when achieving the desired bounds). Concerning

the performance measures, it can be deduced from Tables 5 and 6 that this260

approach works well in general, especially when using Hoeffding. Finally, it

should be noted how the reduction in the number of features is quite notable

for some datasets, as before.

Table 5: Performance measures under the cost-sensitive sparse SVM with radial kernel and

λ∗1 = λ1, λ∗−1 = λ−1.

Name SVM FS Feature reduction

Mean Std Mean Std

wisconsin Acc 0.975 0.021 0.956 0.012 30 → 2 (0 Std)

TPR 0.992 0.013 0.988 0.016

TNR 0.943 0.051 0.893 0.051

votes Acc 0.954 0.033 0.947 0.034 32 → 2 (0 Std)

TPR 0.955 0.038 0.928 0.059

TNR 0.947 0.059 0.974 0.036

nursery Acc 1 0 1 0 19 → 1 (0 Std)

TPR 1 0 1 0

TNR 1 0 1 0

17



Table 6: Performance measures under the cost-sensitive sparse SVM with radial kernel and

λ∗1 = λ1 +
√
− logα/(2|I1|), λ∗−1 = λ−1 +

√
− logα/(2|I−1|).

Name SVM FS Feature reduction

Mean Std Mean Std

wisconsin Acc 0.975 0.021 0.947 0.03 30 → 6.2 (0.919 Std)

TPR 0.992 0.013 0.967 0.039

TNR 0.943 0.051 0.907 0.02

votes Acc 0.954 0.033 0.949 0.03 32 → 9.3 (1.16 Std)

TPR 0.955 0.038 0.959 0.034

TNR 0.947 0.059 0.939 0.043

nursery Acc 1 0 1 0 19 → 1 (0 Std)

TPR 1 0 1 0

TNR 1 0 1 0
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5. Concluding remarks

In this paper we have proposed a Feature Selection procedure for binary265

Support Vector Machines that yields a novel, sparse, SVM. Contrary to existing

Feature Selection approaches, we take explicitly into account that misclassifica-

tion costs may be rather different in the two groups, and thus, instead of seeking

the classifier maximizing the margin, we seek the most sparse classifier that at-

tains certain true positive and true negative rates on the dataset. For both270

SVM with linear and radial kernel, the problem is written in a straightforward

manner, solving first a mixed integer linear problem and then their standard

SVM formulations, considering only the features obtained in the first problem

as well as the performance constraints. The reported numerical results show

that the novel approaches lead to comparable or better performance rates in275

addition to an important reduction in the number of variables.

Several extensions of the approach presented in this paper are possible and,

in our opinion, deserve further study. First, several classification and regression

procedures based on optimization problems, such as Support Vector Regres-

sion, logistic regression or distance-weighted discrimination, are amenable to280

address, as done here, an integrated FS and classification or regression. The

optimization problems obtained in this way have a structure which should be

exploited to make the approach competitive. Second, even within SVM, it

should be observed that SVM is a tool for binary classification. For multiclass

datasets, classification is performed by solving a series of SVM problems, see285

[18, 40]. When some classes are hard to identify, the basic multiclass strategies

may yield discouraging results. Performing simultaneously feature selection and

class fusion, as in [41], is an interesting nontrivial extension of our approach. To

do this, problems (P1), (P2) and (P3) will need to be conveniently modified.
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Appendix295

In this section we describe step by step how formulation (9) is built from

equation (8). Hence, let us suppose first that we have the model

minw,β,ξ w>w + C
∑
i∈I ξi

s.t. yi(w
>xi + β) ≥ 1− ξi, i ∈ I

0 ≤ ξi ≤ L(1− ζi) i ∈ I

µ(ζ)` ≥ λ` ` ∈ L

ζi ∈ {0, 1} i ∈ I.

This one can be rewritten as

minζ minω,β,ξ ω>ω + C
∑
i∈I

ξi

s.t. ζi ∈ {0, 1} i ∈ I s.t. yi
(
ω>xi + β

)
≥ 1− ξi, i ∈ I

µ(ζ)` ≥ λ` ` ∈ L 0 ≤ ξi ≤ L(1− ζi) i ∈ I

If we assume that the binary variables ζ fixed, the Karush–Kühn–Tucker (KKT)

conditions for the inner problem are

ω =
∑
i∈I

αiyixi

0 =
∑
i∈I

αiyi

0 ≤ αi ≤ C/2 i ∈ I.

Substituting these expressions into the last optimization problem, the partial

dual of such problem can be calculated, obtaining300

min
ζ

min
α,β,ξ

(∑
i∈I

αiyixi

)>(∑
i∈I

αiyixi

)
+ C

∑
i∈I

ξi

s.t. zj ∈ {0, 1} j ∈ J s.t. yi

((∑
i∈I

αiyixi

)>
xi + β

)
≥ 1− ξi i ∈ I

µ(ζ)` ≥ λ` ` ∈ L 0 ≤ ξi ≤ L(1− ζi) i ∈ I∑
i∈I

αiyi = 0

0 ≤ αi ≤ C/2 i ∈ I
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As a last step, the kernel trick is used and the final formulation (9) is obtained.
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