27 research outputs found

    Discovery of Inhibitors of Leishmania β-1,2-Mannosyltransferases Using a Click-Chemistry-Derived Guanosine Monophosphate Library

    Get PDF
    Leishmania spp. are a medically important group of protozoan parasites that synthesize a novel intracellular carbohydrate reserve polymer termed mannogen. Mannogen is a soluble homopolymer of β-1,2-linked mannose residues that accumulates in the major pathogenic stages in the sandfly vector and mammalian host. While several steps in mannogen biosynthesis have been defined, none of the enzymes have been isolated or characterized. We report the development of a simple assay for the GDP-mannose–dependent β-1,2-mannosyltransferases involved in mannogen synthesis. This assay utilizes octyl α-d-mannopyranoside to prime the formation of short mannogen oligomers up to 5 mannose residues. This assay was used to screen a focussed library of 44 GMP-triazole adducts for inhibitors. Several compounds provided effective inhibition of mannogen β-1,2-mannosyltransferases in a cell-free membrane preparation. This assay and inhibitor compounds will be useful for dissecting the role of different mannosyltransferases in regulating de novo biosynthesis and elongation reactions in mannogen metabolism

    Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source

    Get PDF
    Intracellular parasites, such as Leishmania spp, must acquire suitable carbon sources from the host cell in order to replicate. Here we present evidence that intracellular amastigote stages of Leishmania exploit amino sugars in the phagolysosome of mammalian macrophages as a source of carbon and energy. L. major parasites are capable of using N-acetylglucosamine and glucosamine as primarily carbon sources and contain key enzymes required for conversion of these sugars to fructose-6-phosphate. The last step in this pathway is catalyzed by glucosamine-6-phosphate deaminase (GND), which was targeted to glycosomes via a canonical C-terminal targeting signal when expressed as a GFP fusion protein. Mutant parasites lacking GND were unable to grow in medium containing amino sugars as sole carbohydrate source and rapidly lost viability, concomitant with the hyper-accumulation of hexosamine-phosphates. Expression of native GND, but not a cytosolic form of GND, in Δgnd parasites restored hexosamine-dependent growth, indicating that toxicity is due to depletion of glycosomal pools of ATP. Non-lethal increases in hexosamine phosphate levels in both Δgnd and wild type parasites was associated with a defect in promastigote metacyclogenesis, suggesting that hexosamine phosphate levels may influence parasite differentiation. Promastigote and amastigote stages of the Δgnd mutant were unable to replicate within macrophages and were either completely cleared or exhibited reduced lesion development in highly susceptible Balb/c mice. Our results suggest that hexosamines are a major class of sugars in the macrophage phagolysosome and that catabolism of scavenged amino sugars is required to sustain essential metabolic pathways and prevent hexosamine toxicity

    Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana

    Get PDF
    Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Δtkt cells were not infective to mice. Δtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both

    Computational Characterization of 3′ Splice Variants in the GFAP Isoform Family

    Get PDF
    Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein specific to central nervous system (CNS) astrocytes. It has been the subject of intense interest due to its association with neurodegenerative diseases, and because of growing evidence that IF proteins not only modulate cellular structure, but also cellular function. Moreover, GFAP has a family of splicing isoforms apparently more complex than that of other CNS IF proteins, consistent with it possessing a range of functional and structural roles. The gene consists of 9 exons, and to date all isoforms associated with 3′ end splicing have been identified from modifications within intron 7, resulting in the generation of exon 7a (GFAPδ/ε) and 7b (GFAPκ). To better understand the nature and functional significance of variation in this region, we used a Bayesian multiple change-point approach to identify conserved regions. This is the first successful application of this method to a single gene – it has previously only been used in whole-genome analyses. We identified several highly or moderately conserved regions throughout the intron 7/7a/7b regions, including untranslated regions and regulatory features, consistent with the biology of GFAP. Several putative unconfirmed features were also identified, including a possible new isoform. We then integrated multiple computational analyses on both the DNA and protein sequences from the mouse, rat and human, showing that the major isoform, GFAPα, has highly conserved structure and features across the three species, whereas the minor isoforms GFAPδ/ε and GFAPκ have low conservation of structure and features at the distal 3′ end, both relative to each other and relative to GFAPα. The overall picture suggests distinct and tightly regulated functions for the 3′ end isoforms, consistent with complex astrocyte biology. The results illustrate a computational approach for characterising splicing isoform families, using both DNA and protein sequences

    Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: Modulation of Innate Immune System and Variations in Carbohydrate Structure

    Get PDF
    The essential role of the lipophosphoglycan (LPG) of Leishmania in innate immune response has been extensively reported. However, information about the role of the LPG-related glycoinositolphospholipids (GIPLs) is limited, especially with respect to the New World species of Leishmania. GIPLs are low molecular weight molecules covering the parasite surface and are similar to LPG in sharing a common lipid backbone and a glycan motif containing up to 7 sugars. Critical aspects of their structure and functions are still obscure in the interaction with the vertebrate host. In this study, we evaluated the role of those molecules in two medically important South American species Leishmania infantum and L. braziliensis, causative agents of visceral (VL) and cutaneous Leishmaniasis (CL), respectively. GIPLs derived from both species did not induce NO or TNF-α production by non-primed murine macrophages. Additionally, primed macrophages from mice (BALB/c, C57BL/6, TLR2−/− and TLR4−/−) exposed to GIPLs from both species, with exception to TNF-α, did not produce any of the cytokines analyzed (IL1-β, IL-2, IL-4, IL-5, IL-10, IL-12p40, IFN-γ) or p38 activation. GIPLs induced the production of TNF-α and NO by C57BL/6 mice, primarily via TLR4. Pre incubation of macrophages with GIPLs reduced significantly the amount of NO and IL-12 in the presence of IFN-γ or lipopolysaccharide (LPS), which was more pronounced with L. braziliensis GIPLs. This inhibition was reversed after PI-specific phospholipase C treatment. A structural analysis of the GIPLs showed that L. infantum has manose rich GIPLs, suggestive of type I and Hybrid GIPLs while L. braziliensis has galactose rich GIPLs, suggestive of Type II GIPLs. In conclusion, there are major differences in the structure and composition of GIPLs from L. braziliensis and L. infantum. Also, GIPLs are important inhibitory molecules during the interaction with macrophages

    Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein.

    No full text
    The non-alpha-helical N-terminal domain of intermediate filament proteins plays a key role in filament assembly. Previous studies have identified a nonapeptide motif, SSYRRIFGG, in the non-alpha-helical N-terminal domain of vimentin that is required for assembly. This motif is also found in desmin, peripherin and the type IV intermediate filament proteins. GFAP is the only type III intermediate filament protein in which this motif is not readily identified. This study has identified two motifs in the non-alpha-helical N-terminal domain of mouse GFAP that play important roles in GFAP assembly. One motif is located at the very N terminus and has the consensus sequence, MERRRITS-ARRSY. It has some characteristics in common with the vimentin nonapeptide motif, SSYRRIFGG, including its location in the non-alpha-helical N-terminal domain and a concentration of arginine residues. Unlike the vimentin motif in which even conserved sequence changes affect filament assembly, the GFAP consensus sequence, MERRRITS-ARRSY, can be replaced by a completely unrelated sequence; namely, the heptapeptide, MVRANKR, derived from the lambda cII protein. When fused to GFAP sequences with sequential deletions of the N-terminal domain, the lambda cII heptapeptide was used to help identify a second motif, termed the RP-box, which is located just upstream of the GFAP alpha-helical rod domain. This RP-box affected the efficiency of filament assembly as well as protein-protein interactions in the filament, as shown by sedimentation assays and electron microscopy. These results are supported by previous data, which showed that the dramatic reorganization of GFAP within cells was due to phosphorylation-dephosphorylation of a site located in this RP-box. The results in this study suggest the RP-box motif to be a key modulator in the mechanism of GFAP assembly, and support a role for this motif in both the nucleation and elongation phases of filament assembly. The RP-box motif in GFAP has the consensus sequence, RLSL-RM-PP. Sequences similar to the GFAP RP-box motif are also to be found in vimentin, desmin and peripherin. Like GFAP, these include phosphorylation and proteolysis sites and are adjacent to the start of the central alpha-helical rod domain, suggesting that this motif of general importance to type III intermediate filament protein assembly

    Evidence that intracellular beta 1-2 mannan is a virulence factor in Leishmania parasites

    No full text
    C1 - Journal Articles RefereedThe protozoan parasite Leishmania mexicana proliferates within macrophage phagolysosomes in the mammalian host. In this study we provide evidence that a novel class of intracellular beta1-2 mannan oligosaccharides is important for parasite survival in host macrophages. Mannan (degree of polymerization 4-40) is expressed at low levels in non-pathogenic promastigote stages but constitutes 80 and 90% of the cellular carbohydrate in the two developmental stages that infect macrophages, non-dividing promastigotes, and lesion-derived amastigotes, respectively. Mannan is catabolized when parasites are starved of glucose, suggesting a reserve function, and developmental stages having low mannan levels or L. mexicana GDPMP mutants lacking all mannose molecules are highly sensitive to glucose starvation. Environmental stresses, such as mild heat shock or the heat shock protein-90 inhibitor, geldanamycin, that trigger the differentiation of promastigotes to amastigotes, result in a 10-25-fold increase in mannan levels. Developmental stages with low mannan levels or L. mexicana mutants lacking mannan do not survive heat shock and are unable to differentiate to amastigotes or infect macrophages in vitro. In contrast, a L. mexicana mutant deficient only in components of the mannose-rich surface glycocalyx differentiates normally and infects macrophages in vitro. Collectively, these data provide strong evidence that mannan accumulation is important for parasite differentiation and survival in macrophages

    Leishmania major Methionine Sulfoxide Reductase A Is Required for Resistance to Oxidative Stress and Efficient Replication in Macrophages

    Get PDF
    Leishmania are protozoan parasites that proliferate within the phagolysome of mammalian macrophages. While a number of anti-oxidant systems in these parasites have been shown to protect against endogenous as well as host-generated reactive oxygen species, the potential role of enzymes involved in the repair of oxidatively damaged proteins remains uncharacterized. The Leishmania spp genomes encode a single putative methionine sulfoxide reductase (MsrA) that could have a role in reducing oxidized free and proteinogenic methionine residues. A GFP-fusion of L. major MsrA was shown to have a cytoplasmic localization by immunofluorescence microscopy and subcellular fractionation. An L. major msrA null mutant, generated by targeted replacement of both chromosomal allelles, was viable in rich medium but was unable to reduce exogenous methionine sulfoxide when cultivated in the presence of this amino acid, indicating that msrA encodes a functional MsrA. The ΔmsrA mutant exhibited increased sensitivity to H(2)O(2) compared to wild type parasites and was unable to proliferate normally in macrophages. Wild type sensitivity to H(2)O(2) and infectivity in macrophages was restored by complementation of the mutant with a plasmid encoding MsrA. Unexpectedly, the ΔmsrA mutant was able to induce normal lesions in susceptible BALB/c indicating that this protein is not essential for pathogenesis in vivo. Our results suggest that Leishmania MsrA contributes to the anti-oxidative defences of these parasites, but that complementary oxidative defence mechansims are up-regulated in lesion amastigotes
    corecore