45 research outputs found

    The muscle – fat duel or why obese children are taller?

    Get PDF
    BACKGROUND: Obesity the epidemic of our times appears to be a problem that is easy to resolve: just eat less and move more. However, this very common condition has turned out to be extremely troublesome, and in some cases even irreversible. METHODS: The interplay between less muscle and more fat tissue is discussed from physiological perspectives with an emphasis on the early years of childhood. RESULTS: It is suggested that the coordinated muscle-fat interactions lead to a fluctuating exchange economy rate. This bodily economic decision, slides between thrift (more fat) and prodigal (more muscle) strategies. The thrift strategy results not only in obesity and less physical activity but also in other maladies which the body is unable to manage. What leads to obesity (less muscle, more fat) might be very difficult to reverse at adulthood, prevention at childhood is thus recommended. CONCLUSION: Early recognition of the ailment (low muscle mass) is crucial. Based on studies demonstrating a 'rivalry' between muscle build-up and height growth at childhood, it is postulated that among the both taller and more obese children the percentage of children with lower muscle mass will be higher. A special, body/muscle-building gymnastics program for children is suggested as a potential early intervention to prevent the ill progress of obesity

    Biochemical properties of Paracoccus denitrificans FnrP:Reactions with molecular oxygen and nitric oxide

    Get PDF
    In Paracoccus denitrificans, three CRP/FNR family regulatory proteins, NarR, NnrR and FnrP, control the switch between aerobic and anaerobic (denitrification) respiration. FnrP is a [4Fe-4S] cluster containing homologue of the archetypal O2 sensor FNR from E. coli and accordingly regulates genes encoding aerobic and anaerobic respiratory enzymes in response to O2, and also NO, availability. Here we show that FnrP undergoes O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion that involves up to 2 O2 per cluster, with significant oxidation of released cluster sulfide to sulfane observed at higher O2 concentrations. The rate of the cluster reaction was found to be ~6-fold lower than that of E. coli FNR, suggesting that FnrP can remain transcriptionally active under microaerobic conditions. This is consistent with a role for FnrP in activating expression of the high O2 affinity cytochrome c oxidase under microaerobic conditions. Cluster conversion resulted in dissociation of the transcriptionally active FnrP dimer into monomers. Therefore, along with E. coli FNR, FnrP belongs to the subset of FNR proteins in which cluster type is correlated with association state. Interestingly, two key charged residues, Arg140 and Asp154, that have been shown to play key roles in the monomer-dimer equilibrium in E. coli FNR are not conserved in FnrP, indicating that different protomer interactions are important for this equilibrium. Finally, the FnrP [4Fe-4S] cluster is shown to undergo reaction with multiple NO molecules, resulting in iron nitrosyl species and dissociation into monomers

    Testing Human Sperm Chemotaxis: How to Detect Biased Motion in Population Assays

    Get PDF
    Biased motion of motile cells in a concentration gradient of a chemoattractant is frequently studied on the population level. This approach has been particularly employed in human sperm chemotactic assays, where the fraction of responsive cells is low and detection of biased motion depends on subtle differences. In these assays, statistical measures such as population odds ratios of swimming directions can be employed to infer chemotactic performance. Here, we report on an improved method to assess statistical significance of experimentally determined odds ratios and discuss the strong impact of data correlations that arise from the directional persistence of sperm swimming

    Behavioral Mechanism during Human Sperm Chemotaxis: Involvement of Hyperactivation

    Get PDF
    When mammalian spermatozoa become capacitated they acquire, among other activities, chemotactic responsiveness and the ability to exhibit occasional events of hyperactivated motilityβ€”a vigorous motility type with large amplitudes of head displacement. Although a number of roles have been proposed for this type of motility, its function is still obscure. Here we provide evidence suggesting that hyperactivation is part of the chemotactic response. By analyzing tracks of spermatozoa swimming in a spatial chemoattractant gradient we demonstrate that, in such a gradient, the level of hyperactivation events is significantly lower than in proper controls. This suggests that upon sensing an increase in the chemoattractant concentration capacitated cells repress their hyperactivation events and thus maintain their course of swimming toward the chemoattractant. Furthermore, in response to a temporal concentration jump achieved by photorelease of the chemoattractant progesterone from its caged form, the responsive cells exhibited a delayed turn, often accompanied by hyperactivation events or an even more intense response in the form of flagellar arrest. This study suggests that the function of hyperactivation is to cause a rather sharp turn during the chemotactic response of capacitated cells so as to assist them to reorient according to the chemoattractant gradient. On the basis of these results a model for the behavior of spermatozoa responding to a spatial chemoattractant gradient is proposed

    Bacterial catalysis of nitrosation: involvement of the nar operon of Escherichia coli.

    No full text
    We have developed a rapid and sensitive fluorimetric method, based on the formation of a fluorescent product from nitrosation of 2,3-diaminonaphthalene, for measuring the ability of bacteria to catalyze nitrosation of amines. We have shown in Escherichia coli that nitrosation can be induced under anaerobic conditions by nitrite and nitrate, that formate is the most efficient electron donor for this reaction, and that nitrosation may be catalyzed by nitrate reductase (EC 1.7.99.4). The narG mutants defective in nitrate reductase do not catalyze nitrosation, and the fnr gene is essential for nitrosation. Induction by nitrite or nitrate of nitrosation, N2O production, and nitrate reductase activity all require the narL gene

    DETECTION OF TOXOPLASMA GONDII TARGETING THE REPETITIVE MICROSATELLITE SEQUENCE BY PCR

    No full text
    Toxoplasma gondii RH strain tachyzoites were inoculated in mice intraperitoneally (1.5x104) and serially propagated. Tachyzoites were cryopreserved using 10-20% glycerol and aliquoted in cryovials in liquid nitrogen. The viability of the preserved tachyzoites were further checked by passage in mice followed by PCR amplification of the highly repetitive sequence of T. gondii. The sequence analysis of the repeated sequence of T. gondii (GenBank Acc. No. KC607824) showed 99.2% homology with Strain SH and Strain PYS (GenBank Acc. no. DQ779192, DQ779189), 98.9% homology with Strain ZS1 (GenBank Acc. no. DQ779196), and 92.5% homology with Strain RH (GenBank Acc. no. DQ779191). The study showed that this repetitive microsatellite sequence could be a good target for detection of toxoplasmosis
    corecore