4,445 research outputs found
Paramagnetic Breakdown of Superconductivity in Ultrasmall Metallic Grains
We study the magnetic-field-induced breakdown of superconductivity in
nm-scale metal grains having a mean electron level spacing (bulk gap). Using a generalized variational BCS approach that
yields good qualitative agreement with measured spectra, we argue that Pauli
paramagnetism dominates orbital diamagnetism, as in the case of thin films in a
parallel magnetic field. However, the first-order transition observed for the
latter can be made continuous by finite size effects. The mean-field procedure
of describing the system by a single pairing parameter breaks down for
.Comment: 4 pages of revtex, 3 postscript figures, uses psfrag.sty, epsfig.sty.
Slightly revised and improved version, matching published versio
Superconductivity in Ultrasmall Metallic Grains
We develop a theory of superconductivity in ultrasmall (nm-scale) metallic
grains having a discrete electronic eigenspectrum with a mean level spacing of
order of the bulk gap. The theory is based on calculating the eigenspectrum
using a generalized BCS variational approach, whose applicability has been
extensively demonstrated in studies of pairing correlations in nuclear physics.
We discuss how conventional mean field theory breaks down with decreasing
sample size, how the so-called blocking effect weakens pairing correlations in
states with non-zero total spin, and how this affects the discrete
eigenspectrum's behavior in a magnetic field, which favors non-zero total spin.
In ultrasmall grains, spin magnetism dominates orbital magnetism, just as in
thin films in a parallel field; but whereas in the latter the magnetic-field
induced transition to a normal state is known to be first-order, we show that
in ultrasmall grains it is softened by finite size effects. Our calculations
qualitatively reproduce the magnetic-field dependent tunneling spectra for
individual aluminum grains measured recently by Ralph, Black and Tinkham. We
argue that previously-discussed parity effects for the odd-even ground state
energy difference are presently not observable for experimental reasons, and
propose an analogous parity effect for the pair-breaking energy that should be
observable provided that the grain size can be controlled sufficiently well.
Finally, experimental evidence is pointed out that the dominant role played by
time-reversed pairs of states, well-established in bulk and in dirty
superconductors, persists also in ultrasmall grains.Comment: 21 pages RevTeX, 12 EPS figures included, uses epsf.st
Parity Effect in Ground State Energies of Ultrasmall Superconducting Grains
We study the superconductivity in small grains in the regime when the quantum
level spacing is comparable to the gap . As
is increased, the system crosses over from superconducting
to normal state. This crossover is studied by calculating the dependence of the
ground state energy of a grain on the parity of the number of electrons. The
states with odd numbers of particles carry an additional energy ,
which shows non-monotonic dependence on . Our predictions
can be tested experimentally by studying the parity-induced alternation of
Coulomb blockade peak spacings in grains of different sizes.Comment: 4 pages, revtex, multicol.st
Ultraviolet Imaging Observations of the cD Galaxy in Abell 1795: Further Evidence for Massive Star Formation in a Cooling Flow
We present images from the Ultraviolet Imaging Telescope of the Abell 1795
cluster of galaxies. We compare the cD galaxy morphology and photometry of
these data with those from existing archival and published data. The addition
of a far--UV color helps us to construct and test star formation model
scenarios for the sources of UV emission. Models of star formation with rates
in the range \sim5-20M_{\sun}yr indicate that the best fitting models
are those with continuous star formation or a recent ( Myr old) burst
superimposed on an old population. The presence of dust in the galaxy,
dramatically revealed by HST images complicates the interpretation of UV data.
However, we find that the broad--band UV/optical colors of this cD galaxy can
be reasonably matched by models using a Galactic form for the extinction law
with . We also briefly discuss other objects in the large UIT
field of view.Comment: To appear in the Astrophysical Journal. 14 AAS preprint style pages
plus 7 figure
Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest.
Abstract
Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA\u27s Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p \u3c 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event
Re-entrant spin susceptibility of a superconducting grain
We study the spin susceptibility chi of a small, isolated superconducting
grain. Due to the interplay between parity effects and pairing correlations,
the dependence of chi on temperature T is qualitatively different from the
standard BCS result valid in the bulk limit. If the number of electrons on the
grain is odd, chi shows a re-entrant behavior as a function of temperature.
This behavior persists even in the case of ultrasmall grains where the mean
level spacing is much larger than the BCS gap. If the number of electrons is
even, chi(T) is exponentially small at low temperatures.Comment: 9 pages, 3 figures. To be published in PR
A small superconducting grain in the canonical ensemble
By means of the Lanczos method we analyze superconducting correlations in
ultrasmall grains at fixed particle number. We compute the ground state
properties and the excitation gap of the pairing Hamiltonian as a function of
the level spacing . Both quantities turn out to be parity dependent and
universal functions of the ratio ( is the BCS gap). We
then characterize superconductivity in the canonical ensemble from the scaling
behavior of correlation functions in energy space.Comment: 11 pages Revtex, 5 figures .ep
Relationship of national institutes of health stroke scale to 30-day mortality in medicare beneficiaries with acute ischemic stroke.
BackgroundThe National Institutes of Health Stroke Scale (NIHSS), a well-validated tool for assessing initial stroke severity, has previously been shown to be associated with mortality in acute ischemic stroke. However, the relationship, optimal categorization, and risk discrimination with the NIHSS for predicting 30-day mortality among Medicare beneficiaries with acute ischemic stroke has not been well studied.Methods and resultsWe analyzed data from 33102 fee-for-service Medicare beneficiaries treated at 404 Get With The Guidelines-Stroke hospitals between April 2003 and December 2006 with NIHSS documented. The 30-day mortality rate by NIHSS as a continuous variable and by risk-tree determined or prespecified categories were analyzed, with discrimination of risk quantified by the c-statistic. In this cohort, mean age was 79.0 years and 58% were female. The median NIHSS score was 5 (25th to 75th percentile 2 to 12). There were 4496 deaths in the first 30 days (13.6%). There was a strong graded relation between increasing NIHSS score and higher 30-day mortality. The 30-day mortality rates for acute ischemic stroke by NIHSS categories were as follows: 0 to 7, 4.2%; 8 to 13, 13.9%; 14 to 21, 31.6%; 22 to 42, 53.5%. A model with NIHSS alone provided excellent discrimination whether included as a continuous variable (c-statistic 0.82 [0.81 to 0.83]), 4 categories (c-statistic 0.80 [0.79 to 0.80]), or 3 categories (c-statistic 0.79 [0.78 to 0.79]).ConclusionsThe NIHSS provides substantial prognostic information regarding 30-day mortality risk in Medicare beneficiaries with acute ischemic stroke. This index of stroke severity is a very strong discriminator of mortality risk, even in the absence of other clinical information, whether used as a continuous or categorical risk determinant. (J Am Heart Assoc. 2012;1:42-50.)
Thermoelectric refrigerator
A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path
- …
