52 research outputs found

    Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis

    Get PDF
    Extending the carotenoid pathway to astaxanthin in plants is of scientific and industrial interest. However, expression of a microbial β-carotene ketolase (BKT) that catalyses the formation of ketocarotenoids in transgenic plants typically results in low levels of astaxanthin. The low efficiency of BKTs in ketolating zeaxanthin to astaxanthin is proposed to be the major limitation for astaxanthin accumulation in engineered plants. To verify this hypothesis, several algal BKTs were functionally characterized using an Escherichia coli system and three BKTs were identified, with high (up to 85%), moderate (∼38%), and low (∼1%) conversion rate from zeaxanthin to astaxanthin from Chlamydomonas reinhardtii (CrBKT), Chlorella zofingiensis (CzBKT), and Haematococcus pluvialis (HpBKT3), respectively. Transgenic Arabidopsis thaliana expressing the CrBKT developed orange leaves which accumulated astaxanthin up to 2 mg g−1 dry weight with a 1.8-fold increase in total carotenoids. In contrast, the expression of CzBKT resulted in much lower astaxanthin content (0.24 mg g−1 dry weight), whereas HpBKT3 was unable to mediate synthesis of astaxanthin in A. thaliana. The none-native astaxanthin was found mostly in a free form integrated into the light-harvesting complexes of photosystem II in young leaves but in esterified forms in senescent leaves. The alteration of carotenoids did not affect chlorophyll content, plant growth, or development significantly. The astaxanthin-producing plants were more tolerant to high light as shown by reduced lipid peroxidation. This study advances a decisive step towards the utilization of plants for the production of high-value astaxanthin

    Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions

    Get PDF
    Genetic manipulation of carotenoid biosynthesis in higher plants has been the objective of a number of biotechnology programs, e.g. the Golden Rice Program. However, tomato (Solanumlycopersicum L.), which naturally accumulates lycopene in fruits, has attracted the attention of many groups who have manipulated it to increase or diversify carotenoid accumulation. One of the most significant achievements was “HighCaro (HC),” a transgenic tomato plant constitutively expressing the tomato lycopene beta-cyclase (tLcy-b), that produces orange fruits due to the complete conversion of lycopene to β-carotene. In this article we report the results of a field trial conducted in Metaponto (Italy) on HC and on two control genotypes to evaluate the stability of the transgenic trait and their yield performances. Transcriptional regulation of eight genes involved in carotenogenesis was assayed by quantitative real-time PCR (qRT-PCR) analysis on fruits collected at four distinct development stages. Statistical analysis results demonstrated that in field conditions the transgene maintained its ability to induce the conversion of lycopene to β-carotene. Moreover, agronomic performances and fruit quality in the transgenic line were not impaired by this metabolic disturbance. Results of qRT-PCR analysis suggested that transcription of PSY-1, PDS and ZDS genes were developmentally regulated in both genotypes. Unexpectedly, Lcy-b expression in transgenic fruits was also developmentally regulated, despite the fact that the gene was driven by a constitutive promoter. Our data provide evidence that in photosynthetic cells a strict and aspecific mechanism controls the level of transcripts until the onset of chromoplasts differentiation, at which point a gene-specific control on transcription takes place

    Nicotiana benthamiana as a Production Platform for Artemisinin Precursors

    Get PDF
    Background Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of precursors of artemisinin, a sesquiterpenoid compound that is used for malaria treatment. Methodology/Principal Findings Biosynthetic genes leading to artemisinic acid, a precursor of artemisinin, were combined and expressed in N. benthamiana by agro-infiltration. The first committed precursor of artemisinin, amorpha-4,11-diene, was produced upon infiltration of a construct containing amorpha-4,11-diene synthase, accompanied by 3-hydroxy-3-methylglutaryl-CoA reductase and farnesyl diphosphate synthase. Amorpha-4,11-diene was detected both in extracts and in the headspace of the N. benthamiana leaves. When the amorphadiene oxidase CYP71AV1 was co-infiltrated with the amorphadiene-synthesizing construct, the amorpha-4,11-diene levels strongly decreased, suggesting it was oxidized. Surprisingly, no anticipated oxidation products, such as artemisinic acid, were detected upon GC-MS analysis. However, analysis of leaf extracts with a non-targeted metabolomics approach, using LC-QTOF-MS, revealed the presence of another compound, which was identified as artemisinic acid-12-ß-diglucoside. This compound accumulated to 39.5 mg.kg-1 fwt. Apparently the product of the heterologous pathway that was introduced, artemisinic acid, is further metabolized efficiently by glycosyl transferases that are endogenous to N. benthamiana. Conclusion/Significance This work shows that agroinfiltration of N. bentamiana can be used as a model to study the production of sesquiterpenoid pharmaceutical compounds. The interaction between the ectopically introduced pathway and the endogenous metabolism of the plant is discussed

    Both “illness and temptation of the enemy”: melancholy, the medieval patient and the writings of King Duarte of Portugal (r. 1433–38)

    Get PDF
    Recent historians have rehabilitated King Duarte of Portugal, previously maligned and neglected, as an astute ruler and philosopher. There is still a tendency, however, to view Duarte as a depressive or a hypochondriac, due to his own description of his melancholy in his advice book, the Loyal Counselor. This paper reassesses Duarte's writings, drawing on key approaches in the history of medicine, such as narrative medicine and the history of the patient. It is important to take Duarte's views on his condition seriously, placing them in the medical and theological contexts of his time and avoiding modern retrospective diagnosis. Duarte's writings can be used to explore the impact of plague, doubt and death on the life of a well-educated and conscientious late-medieval ruler

    Spatial constraints on attention

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN031605 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Embodying interpretation

    No full text
    corecore