78 research outputs found

    The CATERPILLER protein Monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor Ξ±-, and Mycobacterium tuberculosis-induced pro-inflammatory signals

    Get PDF
    The CATERPILLER (CLR, also NOD and NLR) proteins share structural similarities with the nucleotide binding domain (NBD)-leucine-rich repeat (LRR) superfamily of plant disease-resistance (R) proteins and are emerging as important immune regulators in animals. CLR proteins contain NBD-LRR motifs and are linked to a limited number of distinct N-terminal domains including transactivation, CARD (caspase activation and recruitment), and pyrin domains (PyD). The CLR gene, Monarch-1/Pypaf7, is expressed by resting primary myeloid/monocytic cells, and its expression in these cells is reduced by Toll-like receptor (TLR) agonists tumor necrosis factor (TNF) Ξ± and Mycobacterium tuberculosis. Monarch-1 reduces NFΞΊB activation by TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor) as well as TNFR signaling molecules TRAF2 and RIP1 but not the downstream NFΞΊB subunit p65. This indicates that Monarch-1 is a negative regulator of both TLR and TNFR pathways. Reducing Monarch-1 expression with small interference RNA in myeloid/monocytic cells caused a dramatic increase in NFΞΊB activation and cytokine expression in response to TLR2/TLR4 agonists, TNFΞ±, or M. tuberculosis infection, suggesting that Monarch-1 is a negative regulator of inflammation. Because Monarch-1 is the first CLR protein that interferes with both TLR2 and TLR4 activation, the mechanism of this interference is significant. We find that Monarch-1 associates with IRAK-1 but not MyD88, resulting in the blockage of IRAK-1 hyperphosphorylation. Mutants containing the NBD-LRR or PyD-NBD also blocked IRAK-1 activation. This is the first example of a CLR protein that antagonizes inflammatory responses initiated by TLR agonists via interference with IRAK-1 activation

    Sialyl Residues Modulate LPS-Mediated Signaling through the Toll-Like Receptor 4 Complex

    Get PDF
    We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFΞΊB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are Ξ±-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFΞΊB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation

    Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop

    Get PDF
    A summary is provided for the Second AIAA Sonic Boom Workshop held 8-9 January 2017 in conjunction with AIAA SciTech 2017. The workshop used three required models of increasing complexity: an axisymmetric body, a wing body, and a complete configuration with flow-through nacelle. An optional complete configuration with propulsion boundary conditions is also provided. These models are designed with similar nearfield signatures to isolate geometry and shock/expansion interaction effects. Eleven international participant groups submitted nearfield signatures with forces, pitching moment, and iterative convergence norms. Statistics and grid convergence of these nearfield signatures are presented. These submissions are propagated to the ground, and noise levels are computed. This allows the grid convergence and the statistical distribution of a noise level to be computed. While progress is documented since the first workshop, improvement to the analysis methods for a possible subsequent workshop are provided. The complete configuration with flow-through nacelle showed the most dramatic improvement between the two workshops. The current workshop cases are more relevant to vehicles with lower loudness and have the potential for lower annoyance than the first workshop cases. The models for this workshop with quieter ground noise levels than the first workshop exposed weaknesses in analysis, particularly in convective discretization

    Genetic susceptibility to aspergillosis in allogeneic stem-cell transplantation

    Get PDF
    Invasive aspergillosis (IA) is a major threat to positive outcomes for allogeneic stem-cell transplantation (allo-SCT) patients. Despite presenting similar degrees of immunosuppression, not all individuals at-risk ultimately develop infection. Therefore, the traditional view of neutropenia as a key risk factor for aspergillosis needs to be accommodated within new conceptual advances on host immunity and its relationship to infection. Polymorphisms in innate immune genes, such as those encoding TLRs, cytokines and cytokine receptors, have recently been associated with susceptibility to IA in allo-SCT recipients. This suggests that understanding host-pathogen interactions at the level of host genetic susceptibility will allow the formulation of new targeted and patient-tailored antifungal therapeutics, including improved donor screening.Fundação para a CiΓͺncia e a Tecnologia (FCT) - SFRH/BD/65962/2009, SFRH/BPD/46292/2008Specific Targeted Research Projects MANASP (LSHE-CT-2006), contract number 037899 (FP6), Italian Project PRIN2007KLCKP8_004

    Association of Inherited Variation in Toll-Like Receptor Genes with Malignant Melanoma Susceptibility and Survival

    Get PDF
    The family of Toll-like receptors (TLRs) is critical in linking innate and acquired immunity. Polymorphisms in the genes encoding TLRs have been associated with autoimmune diseases and cancer. We investigated the genetic variation of TLR genes and its potential impact on melanoma susceptibility and patient survival. The study included 763 cutaneous melanoma cases recruited in Germany and 736 matched controls that were genotyped for 47 single nucleotide polymorphisms (SNPs) in 8 TLR genes. The relationship between genotype, disease status and survival was investigated taking into account patient and tumor characteristics, and melanoma treatment. Analysis of 7 SNPs in TLR2, 7 SNPs in TLR3 and 8 SNPs in TLR4 showed statistically significant differences in distribution of inferred haplotypes between cases and controls. No individual polymorphism was associated with disease susceptibility except for the observed tendency for TLR2-rs3804099 (odds ratio OR β€Š=β€Š1.15, 95% CI 0.99–1.34, pβ€Š=β€Š0.07) and TLR4-rs2149356 (ORβ€Š=β€Š0.85, 95% CI 0.73–1.00, pβ€Š=β€Š0.06). Both polymorphisms were part of the haplotypes associated with risk modulation. An improved overall survival (Hazard ratio HR 0.53, 95% CI 0.32–0.88) and survival following metastasis (HR 0.55, 95% CI 0.34–0.91) were observed in carriers of the variant allele (D299G) of TLR4-rs4986790. In addition various TLR2, TLR4 and TLR5 haplotypes were associated with increased overall survival. Our results point to a novel association between TLR gene variants and haplotypes with melanoma survival. Our data suggest a role for the D299G polymorphism in the TLR4 gene in overall survival and a potential link with systemic treatment at stage IV of the disease. The polymorphic amino acid residue, located in the ectodomain of TLR4, can have functional consequences

    Maternal TLR4 and NOD2 Gene Variants, Pro-Inflammatory Phenotype and Susceptibility to Early-Onset Preeclampsia and HELLP Syndrome

    Get PDF
    Background: Altered maternal inflammatory responses play a role in the development of preeclampsia and the hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. We examined whether allelic variants of the innate immune receptors toli-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain (NOD2), that impair the inflammatory response to endotexin are related to preeclampsia and HELLP syndrome. Methods and Finding: We determined five common mutations in TLR4 (D299G and T399I and NOD2 (R70W, G908R and L1007fs) in 340 primiparous women with a histo

    CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone

    Get PDF
    The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis

    Development and Characterization of Synthetic Glucopyranosyl Lipid Adjuvant System as a Vaccine Adjuvant

    Get PDF
    Innate immune responses to vaccine adjuvants based on lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls, are driven by Toll-like receptor (TLR) 4 and adaptor proteins including MyD88 and TRIF, leading to the production of inflammatory cytokines, type I interferons, and chemokines. We report here on the characterization of a synthetic hexaacylated lipid A derivative, denoted as glucopyranosyl lipid adjuvant (GLA). We assessed the effects of GLA on murine and human dendritic cells (DC) by combining microarray, mRNA and protein multiplex assays and flow cytometry analyses. We demonstrate that GLA has multifunctional immunomodulatory activity similar to naturally-derived monophosphory lipid A (MPL) on murine DC, including the production of inflammatory cytokines, chemokines, DC maturation and antigen-presenting functions. In contrast, hexaacylated GLA was overall more potent on a molar basis than heterogeneous MPL when tested on human DC and peripheral blood mononuclear cells (PBMC). When administered in vivo, GLA enhanced the immunogenicity of co-administered recombinant antigens, producing strong cell-mediated immunity and a qualitative TH1 response. We conclude that the GLA adjuvant stimulates and directs innate and adaptive immune responses by inducing DC maturation and the concomitant release of pro-inflammatory cytokines and chemokines associated with immune cell trafficking, activities which have important implications for the development of future vaccine adjuvants

    Vibrio cholerae Proteome-Wide Screen for Immunostimulatory Proteins Identifies Phosphatidylserine Decarboxylase as a Novel Toll-Like Receptor 4 Agonist

    Get PDF
    Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory proteins, we developed a new high-throughput approach called β€œEPSIA”, Expressed Protein Screen for Immune Activators. Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD) as a conserved bacterial protein capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine macrophage cells and primary peritoneal macrophage cells to secrete TNFΞ± and IL-6, respectively. PSD-induced proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced ∼40% and ∼15% of IL-6 production compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD. PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo. Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further demonstrate the potential application of PSD as a vaccine adjuvant
    • …
    corecore