3 research outputs found

    Milk microbiome and bacterial load following dry cow therapy without antibiotics in dairy cows with healthy mammary gland

    Get PDF
    Made available in DSpace on 2018-11-26T17:40:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-08-14Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois at Urbana-ChampaignFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Preventive infusion of antibiotics in the mammary gland of cows consumes 11 tons/year of medically relevant antimicrobials, yet, this practice might not be critical to prevent new infections in the healthy mammary gland of cows. Here, we used next-generation sequencing and quantitative real-time PCR to determine the impact of dry cow therapy without antibiotics on milk microbiome and bacterial load, respectively. Cows diagnosed as negative for mastitis at dry off were randomly allocated to receive antibiotic (intramammary ceftiofur hydrochloride) and teat sealant or just teat sealant. Firmicutes was the most abundant phylum, and Corynebacterium, Acinetobacter, and Staphylococcus, often involved in mastitis cases, were the most abundant genera across treatments and time. However, there were no effects of antimicrobial on milk microbiome and bacterial load. Bacterial load was greater at seven days postpartum than at dry off. Dry cow therapy based on teat sealant without antibiotics can be used with no detrimental impacts on milk microbiome and bacterial load in cows with a healthy mammary gland.Univ Illinois, Dept Vet Clin Med, Champaign, IL 61820 USASao Paulo State Univ, Dept Microbiol & Immunol, Inst Biosci, Botucatu, SP, BrazilCornell Univ, Dept Populat Med & Diagnost Sci, Ithaca, NY USAUniv Liverpool, Dept Epidemiol & Populat Hlth, Inst Infect & Global Hlth, Leahurst, Neston, EnglandSao Paulo State Univ, Dept Microbiol & Immunol, Inst Biosci, Botucatu, SP, BrazilFAPESP: 2015/15208

    Predicting predatory impact of juvenile invasive lionfish (Pterois volitans) on a crustacean prey using functional response analysis: effects of temperature, habitat complexity and light regimes

    Get PDF
    The ecological implications of biotic interactions, such as predator-prey relationships, are often context-dependent. Comparative functional responses analysis can be used under different abiotic contexts to improve understanding and prediction of the ecological impact of invasive species. Pterois volitans (Lionfish) [Linnaeus 1758] is an established invasive species in the Caribbean and Gulf of Mexico, with a more recent invasion into the Mediterranean. Lionfish are generalist predators that impact a wide range of commercial and non-commercial species. Functional response analysis was employed to quantify interaction strength between lionfish and a generic prey species, the shrimp (Paleomonetes varians) [Leach 1814], under the contexts of differing temperature, habitat complexity and light wavelength. Lionfish have prey population destabilising Type II functional responses under all contexts examined. Significantly more prey were consumed at 26 °C than at 22 °C. Habitat complexity did not significantly alter the functional response parameters. Significantly more prey were consumed under white light and blue light than under red light. Attack rate was significantly higher under white light than under blue or red light. Light wavelength did not significantly change handling times. The impacts on prey populations through feeding rates may increase with concomitant temperature increase. As attack rates are very high at low habitat complexity this may elucidate the cause of high impact upon degraded reef ecosystems with low-density prey populations, although there was little protection conferred through habitat complexity. Only red light (i.e. dark) afforded any reduction in predation pressure. Management initiatives should account for these environmental factors when planning mitigation and prevention strategies

    Multiclonal human origin and global expansion of an endemic bacterial pathogen of livestock.

    Get PDF
    Peer reviewed: TrueMost new pathogens of humans and animals arise via switching events from distinct host species. However, our understanding of the evolutionary and ecological drivers of successful host adaptation, expansion, and dissemination are limited. Staphylococcus aureus is a major bacterial pathogen of humans and a leading cause of mastitis in dairy cows worldwide. Here we trace the evolutionary history of bovine S. aureus using a global dataset of 10,254 S. aureus genomes including 1,896 bovine isolates from 32 countries in 6 continents. We identified 7 major contemporary endemic clones of S. aureus causing bovine mastitis around the world and traced them back to 4 independent host-jump events from humans that occurred up to 2,500 y ago. Individual clones emerged and underwent clonal expansion from the mid-19th to late 20th century coinciding with the commercialization and industrialization of dairy farming, and older lineages have become globally distributed via established cattle trade links. Importantly, we identified lineage-dependent differences in the frequency of host transmission events between humans and cows in both directions revealing high risk clones threatening veterinary and human health. Finally, pangenome network analysis revealed that some bovine S. aureus lineages contained distinct sets of bovine-associated genes, consistent with multiple trajectories to host adaptation via gene acquisition. Taken together, we have dissected the evolutionary history of a major endemic pathogen of livestock providing a comprehensive temporal, geographic, and gene-level perspective of its remarkable success
    corecore