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Milk microbiome and bacterial load 
following dry cow therapy without 
antibiotics in dairy cows with 
healthy mammary gland
Erika C. R. Bonsaglia1,2, Marilia S. Gomes1, Igor F. Canisso1, Ziyao Zhou1, Svetlana F. Lima3, 
Vera L. M. Rall2, Georgios Oikonomou4, Rodrigo C. Bicalho3 & Fabio S. Lima1

Preventive infusion of antibiotics in the mammary gland of cows consumes 11 tons/year of medically 
relevant antimicrobials, yet, this practice might not be critical to prevent new infections in the healthy 
mammary gland of cows. Here, we used next-generation sequencing and quantitative real-time PCR 
to determine the impact of dry cow therapy without antibiotics on milk microbiome and bacterial load, 
respectively. Cows diagnosed as negative for mastitis at dry off were randomly allocated to receive 
antibiotic (intramammary ceftiofur hydrochloride) and teat sealant or just teat sealant. Firmicutes was 
the most abundant phylum, and Corynebacterium, Acinetobacter, and Staphylococcus, often involved 
in mastitis cases, were the most abundant genera across treatments and time. However, there were no 
effects of antimicrobial on milk microbiome and bacterial load. Bacterial load was greater at seven days 
postpartum than at dry off. Dry cow therapy based on teat sealant without antibiotics can be used with 
no detrimental impacts on milk microbiome and bacterial load in cows with a healthy mammary gland.

Mastitis is the most prevalent disease and the primary cause of economic losses in dairy cows1. The major losses 
caused by mastitis include reduced milk production, discarded milk, premature culling, reduced conception rates, 
and cost with therapy2–5.

New bacterial infections occur more often during the dry-off period than in any other time points during 
the lactation6. Studies have shown that between 13% and 35% of quarters are subclinically infected during dry 
off period and between 8% and 25% develop intramammary infections in that period7–9. Currently, blanket dry 
cow therapy is the strategy used to control udder health during the dry period in more than 90% of dairy oper-
ation in the United States10. Blanket dry cow therapy consists of treating dairy cows at dry-off with long-acting 
intramammary antibiotics. This therapeutic approach has been recommended by the National Mastitis Council 
as an integral part of its mastitis prevention program11.

However, the widely-spread use of blanket dry cow therapy translates into 11 tons of medically important 
antimicrobials being used intramammary annually12, 13. The indiscriminate use of antibiotics in farm animals is 
often associated with the development of antimicrobial resistance (AMR) and dissemination14. The non-judicious 
use of antibiotics can cause loss of effectiveness that in turn undermine the ability to fight infectious diseases 
threatening human and animal health.

Although the reduction in antimicrobial use in animals may not directly prevent evolving AMR, it may delay 
further development and spread, without adversely affecting animal production15. Recent studies have indicated 
that selective dry cow therapy based on the use of on-farm culture and teat sealant alone may allow reduction of 
antimicrobials without increasing new intramammary infections and somatic cell counts in the following lacta-
tion16–18. However, the impact of this practice on milk microbiome, bacterial load, and pathogens associated with 
mastitis remains to be determined.
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Development of AMR following treatment with antibiotics is not exclusive of pathogenic bacteria, but it 
may occur in the ‘innocent’ bystanders (i. e., microbiome makeup) of body systems including the mammary 
gland19, 20. Indeed, mastitis and potentially the dissemination of AMR might be a result of a dysbiosis in the mam-
mary gland21–23. In humans, the normal commensal mammary gland microflora protects against Staphylococcus 
aureus24. Therefore, it is reasonable to suggest that commensals may play an important role in mastitis patho-
genesis and development of AMR in dairy cows. A recent study evaluated the effects of mastitis treatment with a 
third-generation cephalosporin (ceftiofur hydrochloride) in the milk microbiome of dairy cows diagnosed with 
mastitis. The findings of the study revealed that milk microbiome, cure rates, and bacterial load did not shift with 
the treatment of mastitis suggesting that microbial infections in the mammary gland might not necessarily benefit 
from antimicrobial use25.

Investigation of dry cow therapy without antibiotics effects on mammary gland pathogens and its 
co-inhabitant microbes are necessary to elucidate mastitis pathogenesis, AMR, and the feasibility of implement-
ing programs to reduce antimicrobial use in dairy cows. Metagenomic approaches are allowing in-depth com-
parative analyses of multiple sites within an individual and across populations at an affordable price26. Studies 
have been carried out to characterize the milk microbiome of dairy cows with healthy mammary gland and 
mastitis21–23, 25, 27. However, the effects of using dry cow therapy with teat sealant alone or with antibiotics on milk 
microbiome and bacterial load have not been investigated.

Therefore, the aims of this study were to compare the effects of dry cow therapy with and without antimicro-
bial, on milk microbiome and bacterial load in cows diagnosed as negative for mastitis at dry off.

Results
Descriptive Evaluation of Mastitis Incidence, Somatic Cell Count, and Bacterial Culture. At 
the time of enrollment (Dry off), there were no differences (P = 0.47) in somatic cell count scores between cows 
assigned to receive antibiotic (ceftiofur hydrochloride) with teat sealant (ATS, score 2.6, n = 36 cows) and cows 
receiving the teat sealant alone (TS, score 2.5, n = 36 cows). Inclusion of ceftiofur hydrochloride as part of the dry 
cow therapy did not affect the incidence of mastitis in the first 60 days postpartum (ATS = 8.0% vs. TS = 12.0%, 
P = 0.46), somatic cell count score (ATS = 2.5 vs TS = 2.7, P = 0.40), and percent of culture positive cows at day 7 
postpartum (ATS = 20% vs TS = 25%, P = 0.68).

Sequencing Results. Milk samples were pooled from all quarters at dry off and seven days postpartum. 
Within each group, 21 (out of 36) were randomly selected to be sequenced. This design resulted in 84 samples 
collected individually to assess the microbiome by amplification and next-generation sequencing of the V4 region 
of the 16s rRNA gene. A single run was performed using the MiSeq sequencer (Illumina, Inc., San Diego, CA) 
and the V2 chemistry kits (300-cycles) and 84 barcoded samples. Sequences were filtered for size, quality, and for 
the presence of chimeras.

Number of reads, richness, diversity, and 16S rRNA gene copy numbers. The mean number of 
reads for each group (ATS and TS) was not significantly different at dry off and 7 days postpartum as shown 
in Fig. 1A. Likewise, no significant differences were observed for OTU richness and alpha diversity indexes, 
represented by the mean Chao1 richness index illustrated in Fig. 1B. The mean Shannon richness and diversity 
indexes for each treatment at dry off and 7 days postpartum were also not different as shown in Fig. 1C. Chao1 
richness index is a nonparametric estimator of minimum richness. This index is based on the number of rare 
OTUs within a single sample28. When a sample exhibits many singletons, it is likely that more undetected OTUs 
exist, and the Chao 1 richness index estimates a higher richness than it would estimate for a sample without rare 
OTUs. Whereas, Shannon diversity index includes both richness and abundance in a single value of evenness. 
As consequence of these definitions, microbiomes numerically dominated by one or few organisms have low 
evenness, and when abundance is distributed equally among organisms, the microbiome has high evenness. The 
richness and the evenness were analyzed to assess whether any divergence was observed across groups and time. 
The Chao 1 and Shannon indexes were not statistically different between ATS and TS groups, regardless of time 
points (Fig. 1B and C).

A negative correlation was detected between the total bacterial load, as assessed by the number of 16S rRNA 
gene copies, and the Shannon diversity index (r = − 0.29, P-value < 0.001). Similar negative correlations were 
found when data were stratified by the occurrence of clinical mastitis, subclinical mastitis, and culture on day 7 
postpartum (Table 1). No correlation was found between the number of 16S rRNA gene copies and the Chao 1 
richness index (data not shown).

Quantitative real-time PCR was used to monitor the amplification of the 16S rRNA-targeted gene during PCR. 
As a result of this method, an absolute quantification that gives the exact number of the target DNA molecules 
within a sample, by comparison with DNA standards (serial dilution of our 16S rRNA gene clone) using a cali-
bration curve is provided.

No significant differences were found between the bacterial load for conventional dry cow therapy (P = 0.61) 
and selective dry cow therapy (P = 0.76) at dry off and seven days postpartum (Fig. 2). However, bacterial load in 
milk increased from the dry off to seven days postpartum (Fig. 3).

Microbial phylum analysis. The relative abundances of the eight most common phyla of the milk sam-
ples regardless of time and treatment include Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, 
Cyanobacteria, Tenericutes, and Fusobacteria. As depicted in Fig. 4. Firmicutes and Proteobacteria were consist-
ently the most abundant phylum across time points and treatments (Fig. 4). The mean relative abundance of the 
phylum Actinobacteria tended to be reduced (P = 0.06) in the milk samples at 7 days postpartum when compared 
with samples harvested at the dry off (Fig. 4). However, there were no differences (P = 0.81) between treatments 
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for the mean relative abundance of Actinobacteria. The compiled number of phyla in the milk microbiome with 
minor prevalence named “other” was reduced at day 7 postpartum when compared with the dry period (Fig. 4). 
No other differences were observed for treatment and time for other phyla.

Figure 1. Bar graphs illustrating the Chao1 richness index (A), Shannon diversity index (B) and number of 
reads (C) for dry cow therapy with antibiotic (ceftiofur hydrochloride) and teat sealant (ATS) or just teat sealant 
(TS) at dry off and 7 d postpartum. Error bars correspond to standard error of the mean.

Health status Correlation P-values

Healthy −0.33 <0.001

Clinical mastitis −0.62 0.13

Subclinical mastitis at day 7 
postpartum −0.36 0.005

Culture positive at day 7 
postpartum −0.50 0.07

Table 1. Correlation between Shannon diversity index and bacterial load in mammary gland health status. The 
bacterial load was measured via proxy of the number of 16S rRNA genes.

Figure 2. Bar graph illustrating the bacterial load measured as mean log10 number of the 16S rRNA gene 
identified in milk samples of cows enrolled either on with antibiotic (ceftiofur hydrochloride) and teat sealant 
(ATS) or just teat sealant (TS) at dry off and 7 days postpartum. Error bars correspond to standard error of the 
mean.
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Bacterial genera analysis. The prevalence (% of animals detected with the corresponding genus) of the 
30 most abundant bacterial genera present in the milk samples regardless of time and treatment is depicted in 
Table 2. The mean relative abundance for the 30 most common bacterial genera found throughout the different 
time points according to each treatment is presented in Table 1. Corynebacterium, Acinetobacter, Arthrobacter, 
Staphylococcus, and Psychrobacter were the top 5 most prevalent genera across treatments (Table 2).

We performed a multivariable analysis to compare the mean relative abundance for bacterial genera known as 
major mastitis pathogens (Escherichia spp., Klebsiella spp., Mycoplasma spp., Staphylococcus spp., and Streptococcus 
spp.). The use teat sealant with or without ceftiofur hydrochloride at dry off did not affect the mean relative abun-
dance of these major genera of mastitis-associated pathogens (Fig. 5A–F).

Multivariate Analysis of Microbiome Data. Analysis of similarities (ANOSIM) and principal compo-
nent analysis (PCA) revealed that no major differences of treatment at dry off (Fig. 6A) or day 7 postpartum 
(Fig. 6B) were identified in current study. Nonetheless, the ANOSIM revealed that microbiome based on the 50 
most prevalent genera was different between dry off and day 7 postpartum as depicted in Fig. 6C.

Discussion
The purpose of the current study was to assess the effects of dry cow therapy, with antibiotics and teat sealant or 
teat sealant alone on milk microbiome and bacterial load. Our findings suggest that cows screened negative for 
mastitis at the dry off can be managed with teat sealant alone without detrimental effects on milk microbiome and 
bacterial load at first week postpartum. Rapidly-evolving AMR is a global concern to human health and the food 
supply chain29, 30. Indeed, AMR has increased healthcare costs in US$ 4–5 billion per year in the United States31. 
Prophylactic and metaphylactic use of antibiotics in livestock are a major concern for AMR32, 33. Thus, our results 
suggest an alternative for a rational use of antimicrobial in livestock.

Blanket dry cow therapy has been used to reduce new intramammary infection and to treat cases of chronic 
mastitis caused by Staphylococcus aureus and Streptococcus agalactiae. On the other hand, blanket dry cow ther-
apy exposed cows without a history of mammary gland infection to unnecessary antimicrobial use. Recent studies 
out of Europe and Canada demonstrated benefits of selective dry cow therapy without major detrimental effects 
on the occurrence of new intramammary cases and somatic cells count16–18. The current study was performed to 

Figure 3. Bar graph illustrating the mean log10 number of the 16S rRNA gene identified in milk samples 
collected at dry off and 7 days postpartum. Error bars correspond to standard error of the mean.

Figure 4. Bar graph illustrating the mean relative abundance of major phylum types either on cows receiving 
dry cow therapy with antibiotic (ceftiofur hydrochloride) and teat sealant (ATS) or dry cow therapy only 
with teat sealant (TS) at Dry off and 7 days postpartum. Error bars correspond to standard error of the mean. 
*P < 0.05 for time effect. #P < 0.10 and P > 0.05 for time effect.
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understand the impact of ceftiofur hydrochloride at dry off on mammary gland dysbiosis, presence of pathogens 
on the makeup of milk microbiome, and bacterial load.

Dysbiosis, defined as breakdown in the balance between putative microbial commensals and pathogens, has 
been suggested to contribute to mastitis pathogenesis and the dissemination of AMR through milk21–23. Blanket 
dry cow therapy can disturb the microbiome of a healthy mammary gland. The current study explored the pos-
sibility that eliminating ceftiofur hydrochloride at the dry off in cows without mastitis would prevent dysbiosis, 
favoring the maintenance of commensals that help protect the mammary gland from pathogens like observed 
in humans24. However, inclusion of ceftiofur hydrochloride did not shift milk microbiome. The absence of shift 
in milk microbiome may indicate that microbial communities are dynamic, and an antimicrobial induced dis-
turbance of the milk microflora could be reversed by the time that cows started a new lactation (i.e., ~60d later). 
This potential explanation is consistent with a recent study revealing that milk microbiome returned to previous 
composition 14d after experimentally induced mastitis with E. coli and treatment with ceftiofur25. A second possi-
bility is that ceftiofur hydrochloride disturbances in the healthy mammary gland are negligible not leading to the 
occurrence of dysbiosis. In the present study, only healthy cows were used, thus, the results in milk microbiome 
shift could have been different if cows with mastitis were also included. The apparent lack of microbiome shift 
could be due to the variability of individual cow’s milk microbiome, the low abundance of minor taxa, and the 
lack of specificity of analysis based on phylum and genus.

Blanket dry cow therapy presumably prevents and treats mastitis caused by Staphylococcus aureus and 
Streptococcus agalactiae at dry off. These major mastitis pathogens were not present in the cows enrolled in this 
study. However, it is vital to emphasize that the cows enrolled in the current study represent the majority of cows 
in the US34, making the use of antimicrobial at dry off a questionable practice. The current dataset corroborates 
Cameron et al.16 findings that revealed similar prevalence of new intramammary infections for cows receiving 
blanket or selective dry cow therapy based on bacterial culture performed at the farm. Thus, intramammary 
antibiotic infusion at the dry off does not seem to be a necessary to protect the mammary gland of healthy cows.

Bacterial genera

ATS dry off ATS 7 d pp TS dry off TS 7 d pp

MRA P MRA P MRA P MRA P

Corynebacterium 13.6 100.0% 9.6 100.0% 11.8 100.0% 13.4 100.0%

Acinetobacter 11.1 100.0% 13.2 100.0% 11.3 100.0% 11.1 100.0%

Arthrobacter 5.1 100.0% 6.3 100.0% 4.9 100.0% 5.2 100.0%

Staphylococcus 4.5 100.0% 1.9 100.0% 4.0 100.0% 5.2 100.0%

Psychrobacter 13.6 100.0% 9.6 100.0% 10.9 100.0% 13.4 100.0%

5–7N15 3.5 100.0% 2.9 100.0% 2.4 95.2% 3.8 100.0%

Chryseobacterium 1.8 100.0% 2.7 100.0% 2.5 100.0% 2.2 100.0%

Coxiella 1.1 100.0% 2.3 100.0% 2.0 100.0% 2.8 100.0%

Facklamia 3.5 100.0% 1.4 95.2% 1.6 100.0% 1.4 95.2%

Paracoccus 2.7 100.0% 2.1 100.0% 0.6 100.0% 1.1 95.2%

Prevotella 1.4 100.0% 1.4 100.0% 1.8 100.0% 1.3 100.0%

Pseudomonas 1.6 90.5% 1.9 100.0% 1.2 100.0% 1.9 100.0%

Treponema 0.0 38.1% 0.0 42.9% 3.3 61.9% 0.1 52.4%

Paenibacillus 1.4 95.2% 1.6 100.0% 0.9 100.0% 2.3 9.2%

Ruminobacter 0.9 100.0% 1.9 100.0% 1.3 90.5% 0.8 90.5%

Wautersiella 0.3 80.9% 0.3 80.9% 2.9 80.9% 0.2 71.4%

Cellvibrio 0.8 95.2% 1.2 100.0% 1.3 95.2% 1.0 100.0%

Sphingobacterium 1.2 90.5% 1.4 100.0% 0.8 95.2% 1.6 100.0%

CF231 1.0 95.2% 1.6 100.0% 0.8 100.0% 1.2 100.0%

Ruminococcus 0.8 100.0% 1.1 100.0% 1.1 100.0% 1.3 100.0%

Brachybacterium 1.1 90.5% 1.1 100.0% 0.9 90.5% 1.1 90.5%

Aerococcus 1.0 100.0% 1.3 100.0% 1.0 100.0% 1.4 100.0%

Coprococcus 1.8 95.2% 0.4 95.2% 1.7 95.2% 0.5 90.5%

Luteimonas 0.4 71.4% 1.5 85.7% 0.6 85.7% 1.1 95.2%

Fusobacterium 0.4 80.9% 1.3 90.5% 0.2 85.7% 1.6 76.2%

Porphyromonas 0.9 100.0% 1.3 100.0% 0.8 100.0% 1.2 100.0%

Clostridium 1.1 100.0% 1.0 95.2% 1.1 90.5% 0.7 95.2%

Dorea 0.3 85.7% 1.5 100.0% 0.3 95.2% 1.2 95.2%

Bacteroides 1.0 100.0% 0.9 100.0% 1.0 100.0% 0.8 100.0%

Bacillus 1.2 100.0% 0.9 95.2% 0.9 95.2% 0.6 85.7%

Table 2. Descriptive statistics of the 30 most abundant bacterial genera. 1MRA = Mean relative abundance of 
bacterial genera at dry off and 7 days postpartum for cows receiving antibiotic (ceftiofur hydrochloride) and teat 
sealant (ATS) or just teat sealant (TS). 2P = Percentage of study milk samples in which the indicated genus was 
detected at the given sample. pp = postpartum.
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A second major contributor to the current results was the use of internal teat sealant. This common con-
stituent of dry cow therapy is formulated with bismuth subnitrate into an inert viscous malleable paste without 
antimicrobial properties. The teat sealant creates a physical barrier that during the dry period helps to prevent 
entrance of pathogens into the mammary gland. Studies demonstrated that the number of new intramammary 
infections detected in cows treated with teat sealant alone as dry cow therapy were not different from those cows 
receiving antimicrobials and teat sealant16, 17, 35. We speculate that the physical barrier derived from the use of 
the internal teat sealant support the maintenance of an environment favorable for commensals in the mammary 
gland, which in turn may help microbiome stability during the dry period.

Corynebacterium, Acinetobacter, and Staphylococcus were among the most prevalent genus identified in our 
data analysis. Species from these genera might be involved with the development of mastitis in dairy cows when 
environmental factors and host immunity are favorable36–38. Since 16S rRNA analysis employed herein is based on 
genus taxonomy, limited conclusions can be drawn for the role of species included in these genera following the 
treatment with teat sealant alone or with ceftiofur hydrochloride. Some species included in these genera such as 
Staphylococcus aureus have low probability of cure39, 40, while others Staphylococcus sp. are considered pathogens 
of minor importance41, 42. Additionally, Staphylococcus and Corynebacterium interact synergistically in the human 
milk against the benign microbiota to develop mastitis43. Likewise, mastitis-associated pathogens might disturb 
milk microbiome in a manner that the current experimental design did not allow us to investigate, although this 
was outside of the scope of this study.

Firmicutes was the most abundant phylum in our study, followed by Proteobacteria, Actinobacteria, and 
Bacteroidetes. Firmicutes denotes an important bacterial group for the milk microbiota22, 44, but its specific 
role of milk microbiome remains to be determined. Fusobacterium phylum was more prevalent at 7 d postpar-
tum than at dry off. This bacterium is present in the environment and in milk samples of cows with mastitis, 

Figure 5. Mean relative abundance of the genus Staphylococcus (A), Fusobacterium (B), Streptococcus (C), 
Mycoplasma (D), Escherichia (E), and Klebsiella (F) according to time of sample collection (dry off and day 7 
postpartum) in cows receiving dry cow therapy with antibiotic (ceftiofur hydrochloride) and teat sealant (ATS) 
or only teat sealant (TS). Error bars correspond to standard error of the mean.
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but it does not appear to be directly responsible for the mastitis21. Concurrent occurrence of Fusobacterium 
with mastitis-associated pathogens in early lactation might be due to ongoing changes during the initiation of 
lactation21.

Shannon diversity and Chao1 richness indexes were not significantly different between cows receiving anti-
biotic and teat sealant or teat sealant alone. These results contrast with a previous study identifying variation in 
alpha diversity within 14 days following antimicrobial treatment of cows with experimentally induced mastitis25. 
The discrepancy between the referred25 and our study could be attributed to the inclusion of mastitic cows and 
duration of antimicrobial treatment (>60d vs. 14d). Moreover, a negative correlation was observed between the 
Shannon diversity index and bacterial load indicating that when microbial colonization increases there is a cor-
responding reduction in microbial diversity. This finding is consistent with a human study having a negative 
correlation between bacterial load and alpha-diversity index in milk samples45. The results of our principal com-
ponent analysis and analysis of similarities corroborate to the genera, phylum, and pathogens results indicating 
that there were no effects of using antibiotics during dry off on milk microbiome. The only difference found in our 
beta diversity were the effects of time in our analysis of similarities suggesting that stage of lactation might a more 
important factor influencing milk microbiome composition than the use of antibiotics at dry off.

Conclusion
Use of dry cow therapy based on a standalone teat sealant without mastitis resulted in a similar incidence of 
mastitis, somatic cell count, bacterial culture, bacterial load and milk microbiome than cows assigned to receive 
teat sealant with antibiotic. The current findings suggest that omitting antibiotics from dry cow therapy has no 
detrimental effects in cows without mastitis at the dry off. Future studies need to investigate the impact of dry 
cow therapy strategies (with or without antibiotics or teat sealant) on milk resistome and AMR dissemination.

Methods
Ethics statement. The experimental protocol (#15060) was approved by the Institutional Animal Care and 
Use Committee at the University of Illinois at Urbana-Champaign. The methods were carried out in accordance 
with the approved guidelines.

Experimental design, housing, sampling, and enrollment criteria. The study was conducted in a 
single dairy farm located at the University of Illinois-Urbana. Cows were housed in sand-bedded free stall barn 
during the prepartum period and tie-stall barn during the first 60 days of the postpartum period. The selection 
criterion for pre-enrollment involved the collection of milk samples 24 hours’ prior the day assigned for dry 
off and evaluation of bacterial growth using a commercial on farm-culture system (Accumast®, FERA Animal 
Health, Ithaca, NY). Only cows that had no clinical signs for mastitis or bacterial growth were eligible to be 
enrolled in the study. Multiparous Holstein cows (n = 72) were randomly allocated to either receive an intramam-
mary infusion of 500 mg of ceftiofur hydrochloride (Spectramast DC, Zoetis Inc. Kalamazoo, MI, USA) and a 
teat sealant (Orbeseal®, Zoetis Inc. Kalamazoo, MI, USA) in each of the 4 quarters (ATS, n = 36); or to remain as 
untreated control only receiving the teat sealant (TS, n = 36).

Previously to sampling, cows were properly prepared for milking and milked in the afternoon of the dry off 
day. Thereafter, the teats were cleaned with a gauzed soaked in 70% alcohol, 1 to 5 ml of milk samples aseptically 

Figure 6. Principal component analysis of weighted Unifrac distances and ANOSIM analysis comparing the 
microbiome data per time (A) of sample collection (dry off and day 7 postpartum) and for conventional dry cow 
therapy with antibiotic (ceftiofur hydrochloride) and teat sealant (ATS) or selective dry cow therapy receiving 
only teat sealant (TS) at Dry off (B) and 7 days postpartum (C).
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collected from each quarter. Within cow, samples from each quarter were combined into in a 50-mL graded sterile 
conical tube (Corning Life Sciences, Tewksbury, MA) for further analyses. Milk samples were placed directly into 
a cooler with ice and brought to the laboratory for bacterial culture. Then, 0.1 ml was plated in on-farm culture 
petri dish with specific media (Accumast®, FERA Animal Health, Ithaca, NY) using sterile cotton-tipped swabs. 
Inoculated plates were incubated at 37 °C for 16 h and then evaluated for the presence of common mammary 
gland pathogens as follows: Escherichia coli, Klebsiella spp., Pseudomonas spp., Streptococcus spp., Streptococcus 
uberis, Enterococcus spp., Lactococcus lactis, Staphylococcus spp., Staphylococcus haemolytic, and Staphylococcus 
aureus. As aforementioned, only cows with negative bacterial culture and free from clinical signs of mastitis were 
used in the current study. Cows enrolled in the study had milk samples collected at the dry-off and day seven post 
calving for microbiological evaluation and somatic cell count (SCC). The plates having more than three colonies 
after 16 h incubation at 37 °C were considered positive and the respective samples were discarded. The assessment 
of SCC was performed using the DeLaval Cell Counter DCC® (DeLaval Inc. Kansas City, MO). This automated 
system uses individual disposable cartridges to generate the numbers somatic cell in seconds. The SCC data 
is presented as somatic count score that was calculated as log10 of the amount of cell detected by DeLaval Cell 
Counter. Additionally, a 2 mL milk aliquot of was stored at −80 °C until further DNA extraction for determina-
tion of the cow’s milk microbiome.

DNA extraction, DNA amplification, and sequencing of bacterial 16S rRNA gene. The DNA was 
extracted from all samples using PowerSoil DNA Isolation Kit (MO BIO Laboratory Inc., Carlsbad, CA) following 
the manufacturer’s protocol. The V4 hypervariable region of the bacterial/archaeal 16S rRNA gene was amplified 
by PCR according to a previously described protocol and optimized for the Illumina MiSeq platform (Illumina 
Inc., San Diego, CA, USA)46 using different 12-bp error-correcting Golay barcodes for the 16S rRNA gene PCR47.

The reactions were performed using 10 µM of each primer (515 F and 806 R), EconoTaq Plus Green 1x Master 
Mix (Lucigen®, Middleton, WI, USA), 5 ng–50 ng of individual metagenomic DNA samples and ultrapure water 
to bring the final reaction volume to 25 µL. Blank controls in which no DNA was added to the reaction were per-
formed. All reactions were set up in triplicate. The PCR conditions for amplification were: 1) initial denaturing 
step, 94 °C for 3 min; 2) 35 cycles of 94 °C for 45s; 3) 50 °C for 1 min; 4) 72 °C for 90s; and 5) final elongation step 
of 72 °C for 10 min. Replicates were pooled, and visualized by electrophoresis using 1.2% (wt/vol) agarose gels 
stained with 0.5 mg/ml ethidium bromide. The DNA was purified using Gel/PCR Fragments Extraction Kit (IBI 
Scientific, Peosta, IA, USA). The quantification of purified DNA was carried out using NanoDrop ND-1000 spec-
trophotometer (NanoDrop Technologies, Rockland, DE, USA). All samples were standardized to the same con-
centration and pooled for sequencing on the Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA), into 
two different runs according to specific barcode primers. Final equimolar libraries were prepared and sequenced 
using the MiSeq Reagent Kit V2–300 cycles.

Bioinformatics. The 16S rRNA sequences obtained were processed through the open-source pipeline 
Quantitative Insights into Microbial Ecology (QIIME) version 1.7.0-dev48. Sequences were filtered for quality 
using established guidelines49 and were binned into operational taxonomic units (OTUs) based on 97% iden-
tity using UCLUST50 against the Greengenes reference database51 (May 2013 release). Chimeric sequences 
were removed, and low-abundance clusters were filtered using USEARCH52. The representative sequences for 
each OTU were compared against the Greengenes database for taxonomy assignment, and only full-length, 
high-quality reads (−r = 0) were used for analysis. Shannon diversity index output was generated by the QIIME 
pipeline. Before estimating the Shannon index, all sample libraries were rarefied to an equal depth of 10,000 
sequences using QIIME.

Quantitative PCR. Within each group (ATS and TS), 21 (out of 36) cows were randomly selected to have 
milk samples assessed for bacterial load at dry off and seven days postpartum. For determination of total bacterial 
load by quantitative PCR (qPCR), a plasmid containing the amplified V6 hypervariable region was cloned into 
TOP10 cells using a Zero Blunt® TOPO® PCR cloning kit (Life Technologies, Darmstadt, Germany). Plasmid 
was purified with the QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA, USA) and quantified using Quant-iT™ 
PicoGreen® and a dsDNA Broad Range Assay Kit (Life Technologies Corporation, Carlsbad, CA). Insertion of 
the DNA fragment was confirmed by agarose gel electrophoresis, and by sequencing at the Cornell University 
Life Science Core Laboratories Center. The 16S rRNA copy numbers were measured by qPCR using forward 
5′ TGG AGC ATG TGG TTT AAT TCG A 3′, and reverse 5′ TGC GGG ACT TAA CCC AAC A 3′ primers 
previously described51. PCRs were performed in 15 μL volumes composed of 1X iQTMSybr Green Supermix 
(BIO-RAD Laboratories, Hercules, CA), 300 nM of each primer and 5 pg-50 ng of genomic DNA (or plasmid 
DNA standards). The thermal cycler conditions were as follows: denaturation at 95 °C for 3 min, 40 amplification 
cycles (95 °C for 10s, 55 °C for 30s) and two final steps at 95 °C for 1 min and 55 °C for 1 min followed by melting 
curve determination. All reactions were performed in duplicate (plasmid standards, BTM samples, and blank 
control) using MyiQTM Real-Time PCR Detection System (BIO-RAD Laboratories, Hercules, CA, USA). The 
quantification of 16S target DNA was achieved by ten-fold serial dilutions ranging from 100 to 107 plasmid copies 
of the previously quantified plasmid standard. The average of the cycle threshold value was used for calculation 
of the bacterial load.

Statistical analysis. Categorical data were analyzed using the GLIMMIX procedure of SAS (SAS version 
9.4; SAS Institute Inc., Cary, NC) fitting a binary distribution. The continuous data with repeated measures over 
time within an experimental unit were analyzed using the GLIMMIX procedure of SAS (SAS/STAT version 9.4; 
SAS Institute Inc., Cary, NC) with models fitting a Gaussian distribution. Data were tested for normality of resid-
uals, and non-normally distributed data were transformed before analysis if improvement in residual distribution 
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was observed. The covariance structure that resulted in the smallest Akaike’s information criterion was selected 
for the model. Cow was used as a random effect in our models.

Shannon and Chao1 indexes output were generated by QIIME pipeline. Before estimating the Shannon and 
Chao1 indexes, all sample libraries were rarefied to an equal depth of 10,000 sequences using QIIME. Chao1 and 
Shannon indexes, the total number of reads, and the log of the 16S rDNA copy number (total bacterial load) were 
analyzed using ANOVA by general linear models fitted in JMP Pro 13 (SAS Institute Inc., Cary, NC).

Dunnett’s multiple comparisons procedure was performed to compare the mean number of reads, Shannon 
index and Chao 1 for treatments (ATS and TS) at dry off and day seven postpartum. Correlations between total 
bacterial load and alpha-diversity indexes (Shannon and Chao 1 indexes) were assessed using simple linear 
regression in JMP Pro 13 software (SAS Institute Inc.). The relative abundances of microbial phyla and genera 
types in milk samples at dry off and seven days after calving were compared using general linear models fitted in 
JPM Pro 13 (SAS Institute Inc., Cary, NC).

Dunnett’s multiple comparisons procedure was used to compare the mean relative abundance of the most 
abundant bacterial phyla and the genera of each treatment at dry off and seven days after calving. Differences 
with a value of P ≤ 0.05 were considered significant and those with a value of 0.05 < P ≤ 0.10 were considered 
tendencies.

Multivariate analysis of microbiome data was carried out using R (R Core Team, Vienna, Austria) and JPM 
Pro 13 (SAS Institute Inc., Cary NC). Data from the 50 most prevalent genera were used to analyze beta diversity 
through analysis of similarities (ANOSIM) using non-rarefied data normalized employing the packages vegan in 
R. Principal component analysis (PCA) based on the 50 most prevalent genera was performed using JPM Pro 13 
(SAS Institute Inc).
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