32 research outputs found

    Human genetic polymorphisms in T1R1 and T1R3 taste receptor subunits affect their function.

    Get PDF
    International audienceUmami is the typical taste induced by monosodium glutamate (MSG), which is thought to be detected by the heterodimeric G protein-coupled receptor, T1R1 and T1R3. Previously, we showed that MSG detection thresholds differ substantially between individuals and we further showed that nontaster and hypotaster subjects are associated with nonsynonymous single polymorphisms occurring in the T1R1 and T1R3 genes. Here, we show using functional expression that both amino acid substitutions (A110V and R507Q) in the N-terminal ligand-binding domain of T1R1 and the 2 other ones (F749S and R757C), located in the transmembrane domain of T1R3, severely impair in vitro T1R1/T1R3 response to MSG. A molecular model of the ligand-binding region of T1R1/T1R3 provides a mechanistic explanation supporting functional expression data. The data presented here support causal relations between the genotype and previous in vivo psychophysical studies in human evaluating sensitivity to MSG

    Subclinical endometritis in dairy cattle is associated with distinct mRNA expression patterns in blood and endometrium

    Get PDF
    Cattle with subclinical endometritis (SCE) are sub-fertile and diagnosing subclinical uterine disease remains a challenge. The hypothesis for this study was that endometrial inflammation is reflected in mRNA expression patterns of peripheral blood leucocytes. Transcriptome profiles were evaluated in healthy cows and in cows with SCE using circulating white blood cells (WBC) and endometrial biopsy samples collected from the same animals at 45–55 days postpartum. Bioinformatic analyses of microarray-based transcriptional data identified gene profiles associated with distinct biological functions in circulating WBC and endometrium. In circulating WBC, SCE promotes a pro-inflammatory environment, whereas functions related to tissue remodeling are also affected in the endometrium. Nineteen differentially expressed genes associated with SCE were common to both circulating WBC and the endometrium. Among these genes, transcript abundance of immune factors C3, C2, LTF, PF4 and TRAPPC13 were up-regulated in SCE cows at 45–55 days postpartum. Moreover, mRNA expression of C3, CXCL8, LTF, TLR2 and TRAPPC13 was temporally regulated during the postpartum period in circulating WBC of healthy cows compared with SCE cows. This observation might indicate an advantageous modulation of the immune system in healthy animals. The transcript abundance of these genes represents a potential source of indicators for postpartum uterine health

    Tas1R1-Tas1R3 taste receptor variants in human fungiform papillae.

    No full text
    International audienceMonosodium glutamate as well as metabotropic and ionotropic glutamate receptor agonists have been reported to be perceived as umami by humans. In spite of the fact that Tas1R1-Tas1R3 has been shown to mediate most of the glutamate taste sensation in mice other candidate receptors have been put forward for which a clear role in detection is still lacking. This work was aimed at investigating the molecular determinants underlying umami taste detection in humans. First, we show evidence supporting expression of Tas1R1 and Tas1R3 but not mGluRs in the fungiform papillae of several individuals. Next, we report a number of naturally occurring l-glutamate taste receptor variants and their frequency in a population of Caucasian subjects. Detailed analysis of 9 non-synonymous single nucleotide polymorphisms from three l-glutamate taste GPCR candidates uncovers receptor specific clusters such that all substitutions in Tas1R1 are located in the extracellular N-terminal ligand-binding domain while in Tas1R3 they mostly affect residues in the seven transmembrane-spanning core domain responsible for the interaction with antagonists and allosteric modulators. In mGluR1, nsSNPs identified are clustered in the intracellular C-terminal tail, which is thought to play a role in signaling. Taken together, these results suggest that Tas1R1-Tas1R3 receptor variants found in human fungiform papillae might contribute to inter-individual differences of sensitivity to l-glutamate

    A Novel Subnucleocapsid Nanoplatform for Mucosal Vaccination against Influenza Virus That Targets the Ectodomain of Matrix Protein 2

    No full text
    International audienceIn this study, subnucleocapsid nanorings formed by the recombinant nucleoprotein (N) of the respiratory syncytial virus were evaluated as a platform to anchor heterologous antigens. The ectodomain of the influenza virus A matrix protein 2 (M2e) is highly conserved and elicits protective antibodies when it is linked to an immunogenic carrier, making it a promising target to develop universal influenza vaccines. In this context, one or three M2e copies were genetically linked to the C terminus of N to produce N-M2e and N-3M2e chimeric recombinant nanorings. Mice were immunized intranasally with N-M2e or N-3M2e or with M2e or 3M2e control peptides. N-3M2e-vaccinated mice showed the strongest mucosal and systemic antibody responses. These mice presented a reduced viral load and minor weight loss, and all survived upon challenge with influenza virus A/PR8/34 (H1N1) (PR8). We compared the intranasal route to the subcutaneous route of N-3M2e immunization. Only the intranasal route induced a strong local IgA response and led to the protection of mice upon challenge. Finally, we demonstrated that the induction of anti-M2e antibodies by N-3M2e is not impaired by preexisting anti-N immunity. Overall, these results show that the N nanoring is a potent carrier for mucosal delivery of vaccinal antigens

    Nonsynonymous SNPs in human tas1r1, tas1r3, mGluR1 and individual taste sensitivity to glutamate

    No full text
    Nonsynonymous SNPs in human tas1r1, tas1r3, mGluR1 and individual taste sensitivity to glutamate. 31. annual meeting - Association for chemoreception sciences (AChemS
    corecore