64 research outputs found

    Automatic multiple-zone rigid-body refinement with a large convergence radius

    Get PDF
    Systematic investigation of a large number of trial rigid-body refinements leads to an optimized multiple-zone protocol with a larger convergence radius

    Likelihood-enhanced fast translation functions

    Get PDF

    On macromolecular refinement at subatomic resolution with interatomic scatterers

    Get PDF
    Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules

    Robust indexing for automatic data collection

    Get PDF
    Improved methods for indexing diffraction patterns from macromolecular crystals are presented. The novel procedures include a more robust way to verify the position of the incident X-ray beam on the detector, an algorithm to verify that the deduced lattice basis is consistent with the observations, and an alternative approach to identify the metric symmetry of the lattice

    Surprises and pitfalls arising from (pseudo)symmetry

    Get PDF
    The presence of pseudosymmetry can cause problems in structure determination and refinement. The relevant background and representative examples are presented

    Detection and correction of underassigned rotational symmetry prior to structure deposition

    Get PDF
    An X-ray structural model can be reassigned to a higher symmetry space group using the presented framework if its noncrystallographic symmetry operators are close to being exact crystallographic relationships. About 2% of structures in the Protein Data Bank can be reclassified in this way

    Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement.

    Get PDF
    An approach is presented for addressing the challenge of model rebuilding after molecular replacement in cases where the placed template is very different from the structure to be determined. The approach takes advantage of the observation that a template and target structure may have local structures that can be superimposed much more closely than can their complete structures. A density-guided procedure for deformation of a properly placed template is introduced. A shift in the coordinates of each residue in the structure is calculated based on optimizing the match of model density within a 6 Å radius of the center of that residue with a prime-and-switch electron-density map. The shifts are smoothed and applied to the atoms in each residue, leading to local deformation of the template that improves the match of map and model. The model is then refined to improve the geometry and the fit of model to the structure-factor data. A new map is then calculated and the process is repeated until convergence. The procedure can extend the routine applicability of automated molecular replacement, model building and refinement to search models with over 2 Å r.m.s.d. representing 65-100% of the structure

    Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias.

    Get PDF
    A procedure for carrying out iterative model building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'iterative-build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular-replacement structure and with an experimentally phased structure and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank
    corecore