176 research outputs found

    Intracellular localization of RORα is isoform and cell line-dependent

    Get PDF
    AbstractThe retinoid-related orphan receptor α (RORα) belongs to the nuclear receptor superfamily and comprises four isoforms generated by different promotor usage and alternative splicing. To better understand its function, the subcellular distribution of RORα was investigated. We could show that subcellular distribution of RORα is cell line and isoform-dependent. Isoform specific differences were mediated by the A/B domains which with the exception of RORα1 contain a signal that mediates cytoplasmic localization. The lack of this signal in RORα1 results in a complete nuclear localization and prevents cell membrane association observed for RORα2, 3, and 4. The region responsible for membrane association was identified as the C-terminal α-helix 12. Furthermore, the hinge region/ligand binding domain mediates nuclear localization. Our results show that isoform specific activity of RORα is not only regulated by different expression and DNA binding affinities but also by different subcellular distribution. Different access to the nucleus reveals an important mechanism regulating the activity of this constitutively active nuclear receptor

    NADPH oxidase 4 modulates hepatic responses to lipopolysaccharide mediated by Toll-like receptor-4.

    Get PDF
    Chronic inflammation plays a key role in development of many liver diseases. Stimulation of Toll-like receptor 4 (TLR4) by bacterial lipopolysaccharide (LPS) initiates inflammation and promotes development of hepatocellular carcinoma and other liver diseases. NADPH oxidases contribute to LPS-induced reactive oxygen species (ROS) production and modulate TLR responses, but whether these enzymes function in TLR4 responses of hepatocytes is unknown. In the present work, we examined the role of NADPH oxidase 4 (Nox4) in LPS-induced TLR4 responses in human hepatoma cells and wildtype and Nox4-deficient mice. We found that LPS increased expression of Nox4, TNF-α, and proliferating cell nuclear antigen (PCNA). Nox4 silencing suppressed LPS-induced TNF-α and PCNA increases in human cells. The LPS-induced TNF-α increases were MyD88-dependent, and were attenuated in primary hepatocytes isolated from Nox4-deficient mice. We found that Nox4 mediated LPS-TLR4 signaling in hepatocytes via NF-ĸB and AP-1 pathways. Moreover, the effect of Nox4 depletion was time-dependent; following six weeks of repeated LPS stimulation in vivo, hepatic TNF-α and PCNA responses subsided in Nox4-deficient mice compared with wildtype mice. Therefore, our data suggest that Nox4 mediates LPS-TLR4 signaling in human hepatoma cells and murine hepatocytes and may contribute to the ability of LPS to stimulate liver pathology

    NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation

    Get PDF
    © 2015 Elsevier Inc.All rights reserved. Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm2) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation.Ministerio deEconomía y Competitividad, SAF2012-31338(S.L.),CSD2007-00020(S. L.), SAF2010-37926(J.V.); Instituto de Salud CarlosIII, REDinREN RD12/0021/0009(S.L.), ProteoRed-PT13/0001/0017(J.V.), RETIC-RD12/0042/0056(J.V.); Deutsche Forschungsgemeinschaft (SFB815/TP1toK.S.andR.P.B.andSCHR1241/1-1toK.S.); German Center for Cardiovascular Research; ComunidaddeMadrid “Fi-broteam” S2010/BMD-2321(S.L.);and Fundación Renal “Iñigo Alvarez deToledo” (S.L.). This work was also supported by European Cooperationin Science and Technology actionsBM-1203(EU-ROS) and BM-1005(ENOGAS) (S.L.).A.M.S.is supported by the British Heart Foundation.TheCBMSO receives institutional support from Fundación Ramón ArecesPeer Reviewe

    Soluble epoxide hydrolase limits mechanical hyperalgesia during inflammation.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Cytochrome-P450 (CYP450) epoxygenases metabolise arachidonic acid (AA) into four different biologically active epoxyeicosatrienoic acid (EET) regioisomers. Three of the EETs (i.e., 8,9-, 11,12- and 14,15-EET) are rapidly hydrolysed by the enzyme soluble epoxide hydrolase (sEH). Here, we investigated the role of sEH in nociceptive processing during peripheral inflammation. RESULTS: In dorsal root ganglia (DRG), we found that sEH is expressed in medium and large diameter neurofilament 200-positive neurons. Isolated DRG-neurons from sEH(-/-) mice showed higher EET and lower DHET levels. Upon AA stimulation, the largest changes in EET levels occurred in culture media, indicating both that cell associated EET concentrations quickly reach saturation and EET-hydrolyzing activity mostly effects extracellular EET signaling. In vivo, DRGs from sEH-deficient mice exhibited elevated 8,9-, 11,12- and 14,15-EET-levels. Interestingly, EET levels did not increase at the site of zymosan-induced inflammation. Cellular imaging experiments revealed direct calcium flux responses to 8,9-EET in a subpopulation of nociceptors. In addition, 8,9-EET sensitized AITC-induced calcium increases in DRG neurons and AITC-induced calcitonin gene related peptide (CGRP) release from sciatic nerve axons, indicating that 8,9-EET sensitizes TRPA1-expressing neurons, which are known to contribute to mechanical hyperalgesia. Supporting this, sEH(-/-) mice showed increased nociceptive responses to mechanical stimulation during zymosan-induced inflammation and 8,9-EET injection reduced mechanical thresholds in naive mice. CONCLUSION: Our results show that the sEH can regulate mechanical hyperalgesia during inflammation by inactivating 8,9-EET, which sensitizes TRPA1-expressing nociceptors. Therefore we suggest that influencing the CYP450 pathway, which is actually highly considered to treat cardiovascular diseases, may cause pain side effects.Peer Reviewe

    DGK and DZHK position paper on genome editing: basic science applications and future perspective

    Get PDF
    For a long time, gene editing had been a scientific concept, which was limited to a few applications. With recent developments, following the discovery of TALEN zinc-finger endonucleases and in particular the CRISPR/Cas system, gene editing has become a technique applicable in most laboratories. The current gain- and loss-of function models in basic science are revolutionary as they allow unbiased screens of unprecedented depth and complexity and rapid development of transgenic animals. Modifications of CRISPR/Cas have been developed to precisely interrogate epigenetic regulation or to visualize DNA complexes. Moreover, gene editing as a clinical treatment option is rapidly developing with first trials on the way. This article reviews the most recent progress in the field, covering expert opinions gathered during joint conferences on genome editing of the German Cardiac Society (DGK) and the German Center for Cardiovascular Research (DZHK). Particularly focusing on the translational aspect and the combination of cellular and animal applications, the authors aim to provide direction for the development of the field and the most frequent applications with their problems

    Long non-coding RNA PCAT19 safeguards DNA in quiescent endothelial cells by preventing uncontrolled phosphorylation of replication protein A2

    Get PDF
    In healthy vessels, endothelial cells maintain a stable, differentiated, and growth-arrested phenotype for years. Upon injury, a rapid phenotypic switch facilitates proliferation to restore tissue perfusion. Here we report the identification of the endothelial cell-enriched long non-coding RNA (lncRNA) PCAT19, which contributes to the proliferative switch and acts as a safeguard for the endothelial genome. PCAT19 is enriched in confluent, quiescent endothelial cells and binds to the full replication protein A (RPA) complex in a DNA damage- and cell-cycle-related manner. Our results suggest that PCAT19 limits the phosphorylation of RPA2, primarily on the serine 33 (S33) residue, and thereby facilitates an appropriate DNA damage response while slowing cell cycle progression. Reduction in PCAT19 levels in response to either loss of cell contacts or knockdown promotes endothelial proliferation and angiogenesis. Collectively, PCAT19 acts as a dynamic guardian of the endothelial genome and facilitates rapid switching from quiescence to proliferation

    Biglycan- and Sphingosine Kinase-1 Signaling Crosstalk Regulates the Synthesis of Macrophage Chemoattractants.

    Get PDF
    In its soluble form, the extracellular matrix proteoglycan biglycan triggers the synthesis of the macrophage chemoattractants, chemokine (C-C motif) ligand CCL2 and CCL5 through selective utilization of Toll-like receptors (TLRs) and their adaptor molecules. However, the respective downstream signaling events resulting in biglycan-induced CCL2 and CCL5 production have not yet been defined. Here, we show that biglycan stimulates the production and activation of sphingosine kinase 1 (SphK1) in a TLR4- and Toll/interleukin (IL)-1R domain-containing adaptor inducing interferon (IFN)-β (TRIF)-dependent manner in murine primary macrophages. We provide genetic and pharmacological proof that SphK1 is a crucial downstream mediator of biglycan-triggered CCL2 and CCL5 mRNA and protein expression. This is selectively driven by biglycan/SphK1-dependent phosphorylation of the nuclear factor NF-κB p65 subunit, extracellular signal-regulated kinase (Erk)1/2 and p38 mitogen-activated protein kinases. Importantly, in vivo overexpression of soluble biglycan causes Sphk1-dependent enhancement of renal CCL2 and CCL5 and macrophage recruitment into the kidney. Our findings describe the crosstalk between biglycan- and SphK1-driven extracellular matrix- and lipid-signaling. Thus, SphK1 may represent a new target for therapeutic intervention in biglycan-evoked inflammatory conditions
    corecore