91 research outputs found

    Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Teleost radiation in the oceans required specific physiological adaptations in eggs and early embryos to survive in the hyper-osmotic seawater. Investigating the evolution of aquaporins (AQPs) in these vertebrates should help to elucidate how mechanisms for water homeostasis evolved. The marine teleost gilthead sea bream (<it>Sparus aurata</it>) has a mammalian aquaporin-1 (AQP1)-related channel, termed AQP1o, with a specialized physiological role in mediating egg hydration. However, teleosts have an additional AQP isoform structurally more similar to AQP1, though its relationship with AQP1o is unclear.</p> <p>Results</p> <p>By using phylogenetic and genomic analyses we show here that teleosts, unlike tetrapods, have two closely linked AQP1 paralogous genes, termed <it>aqp1a </it>and <it>aqp1b </it>(formerly AQP1o). In marine teleosts that produce hydrated eggs, <it>aqp1b </it>is highly expressed in the ovary, whereas in freshwater species that produce non-hydrated eggs, <it>aqp1b </it>has a completely different expression pattern or is not found in the genome. Both Aqp1a and Aqp1b are functional water-selective channels when expressed in <it>Xenopus laevis </it>oocytes. However, expression of chimeric and mutated proteins in oocytes revealed that the sea bream Aqp1b C-terminus, unlike that of Aqp1a, contains specific residues involved in the control of Aqp1b intracellular trafficking through phosphorylation-independent and -dependent mechanisms.</p> <p>Conclusion</p> <p>We propose that 1) Aqp1a and Aqp1b are encoded by distinct genes that probably originated specifically in the teleost lineage by duplication of a common ancestor soon after divergence from tetrapods, 2) Aqp1b possibly represents a neofunctionalized AQP adapted to oocytes of marine and catadromous teleosts, thereby contributing to a water reservoir in eggs and early embryos that increases their survival in the ocean, and 3) Aqp1b independently acquired regulatory domains in the cytoplasmatic C-terminal tail for the specific control of Aqp1b expression in the plasma membrane.</p

    Using a new high-throughput video-tracking platform to assess behavioural changes in Daphnia magna exposed to neuro-active drugs

    Get PDF
    © 2019. ElsevierOne of the major challenges that faces today regulatory risk assessment is to speed up the way of assessing threshold sublethal detrimental effects of existing and new chemical products. Recently advances in imaging allows to monitor in real time the behaviour of individuals under a given stress. Light is a common stress for many different organisms. Fish larvae and many invertebrate species respond to light altering their behaviour. The water flea Daphnia magna as many other zooplanktonic species has a marked diel vertical phototactic swimming behaviour against light due to fish predation. The aim of this study was to develop a high throughput image analysis to study changes in the vertical swimming behaviour to light of D. magna first reproductive adult females exposed to 0.1 and 1 µg/L of four psychiatric drugs: diazepam, fluoxetine, propranolol and carbamazepine during their entire life. Experiments were conducted using a new custom designed vertical oriented four 50 mL chamber device controlled by the Noldus software (Netherlands). Changes in speed, preferred area (bottom vs upper areas) and animal aggregation were analysed using groups of animals under consecutive periods of dark and apical light stimulus of different intensities. Obtained results indicated that light intensity increased the speed but low light intensities allowed to better discriminate individual responses to the studied drugs. The four tested drugs decreased the response of exposed organisms to light: individuals move less, were closer to the bottom and at low light intensities were closer each other. At high light intensities, however, exposed individuals were less aggregated. Propranolol, carbamazepine and fluoxetine were the compounds effecting most the behaviour. Our results indicated that psychiatric drugs at environmental relevant concentrations alter the vertical phototactic behaviour of D. magna individuals and that it is possible to develop appropriate high-throughput image analysis devices to measure those responses.Peer ReviewedPostprint (author's final draft

    Zebrafish is a predictive model for identifying compounds that protect against brain toxicity in severe acute organophosphorus intoxication

    Get PDF
    Acute organophosphorus (OP) intoxication is aworldwide clinical and public health problem. In addition to cholinergic crisis, neurodegeneration and brain damage are hallmarks of the severe form of this toxidrome. Recently, we generated a chemical model of severe acute OP intoxication in zebrafish that is characterized by altered head morphology and brain degeneration. The pathophysiological pathways resulting in brain toxicity in this model are similar to those described in humans. The aim of this study was to assess the predictive power of this zebrafish model by testing the effect of a panel of drugs that provide protection in mammalian models. The selected drugs included "standard therapy" drugs (atropine and pralidoxime), reversible acetylcholinesterase inhibitors (huperzine A, galantamine, physostigmine and pyridostigmine),N-methyl-d-aspartate (NMDA) receptor antagonists (MK-801 and memantine), dual-function NMDA receptor and acetylcholine receptor antagonists (caramiphen and benactyzine) and anti-inflammatory drugs (dexamethasone and ibuprofen). The effects of these drugs on zebrafish survival and the prevalence of abnormal head morphology in the larvae exposed to 4 μM chlorpyrifos oxon [1 × median lethal concentration (LC50)] were determined. Moreover, the neuroprotective effects of pralidoxime, memantine, caramiphen and dexamethasone at the gross morphological level were confirmed by histopathological and transcriptional analyses. Our results demonstrated that the zebrafish model for severe acute OP intoxication has a high predictive value and can be used to identify new compounds that provide neuroprotection against severe acute OP intoxication. The online version of this article (doi:10.1007/s00204-016-1851-3) contains supplementary material, which is available to authorized users

    A Zebrafish Model of Neurotoxicity by Binge-Like Methamphetamine Exposure

    Get PDF
    Hyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure. After an initial testing, zebrafish was exposed to 40 mg/L of METH for 48h, and the effects on the brain monoaminergic profile, locomotor, anxiety-like and social behaviors as well as on the expression of key genes of the catecholaminergic system were determined. A concentration- and time-dependent decrease in the brain levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) was found in METH-exposed fish. A significant hyperactivity was found during the first hour of exposure followed 3h after by a positive geotaxis and negative scototaxis in the novel tank and in the light/dark paradigm, respectively. Moreover, the behavioral phenotype in the treated fish was consistent with social isolation. At transcriptional level, th1 and slc18a2 (vmat2) exhibited a significant increase after 3h of exposure, whereas the expression of gfap, a marker of astroglial response to neuronal injury, was strongly increased after 48h exposure. However, no evidences of oxidative stress were found in the brain of the treated fish. Altogether, this study demonstrates the suitability of the adult zebrafish as a model of METH-induced neurotoxicity and provides more information about the biochemical and behavioral consequences of METH abuse

    REGULATION OF BETA-ADRENOCEPTORS ACTIVITYUSING SYNTHETIC LIGHT-REGULATED MOLECULES

    Get PDF
    Beta-adrenoceptors (ß-AR) are prototypical G proteincoupled receptors and important pharmacological targets for many diseases. Indeed, a number of approved drugs target these receptors due to their key role on many physiological functions. Among other examples, we encounter ß1-AR antagonists (ß- Blockers), which constitute the first-line therapy for the treatment of heart diseases, and ß2-AR agonists, which act as bronchodilators for the treatment of breathing pathologies. Considering the relevance of these receptors, achieving a reversible and localised control of their activity would provide a powerful tool, both for its research applications and its clinical potential. In this context, photopharmacology arises as a potent approach. Photopharmacology is an emerging field based on the use of synthetic light-regulated molecules to allow reversible spatiotemporal control of target receptors in native tissues. These ligands have the potential to provide a precise and controllable therapeutic action with increased efficacy and reduced side effects. Moreover, the fine regulation on demand of the receptor activation state is of great interest for their study in non-modified cells, tissues and organisms. The present project provides the first proof of concept for beta-adrenoceptor photopharmacology. We first designed and synthesised libraries of lightregulated compounds in order to regulate ß-AR activity with spatiotemporal precision. Subsequent testing highlighted the successful development of compounds with promising pharmacological properties which can be reversibly and irreversibly controlled by light. The discovered molecules enable a fine control of ß-AR in their native environment that will certainly open the door to innovative research procedures and may inspire future personalized therapies targeting these receptors

    In vitro and in vivo regulation of ß-Adrenoceptors signaling using synthetic light-regulated molecules

    Get PDF
    Beta-adrenoceptors (ß-AR) are prototypical G protein-coupled receptors (GPCR) and important pharmacological targets for numerous diseases. Indeed, a number of approved drugs target ß-AR, which are key regulators of many physiological functions. Among other examples, ß1-AR antagonists (known as ß-Blockers) are first-line therapies for the treatment of heart failure, and ß2-AR agonists, which act as bronchodilators, are widely used for the treatment of breathing pathologies. Considering the medical relevance of these receptors, achieving a reversible and localized control of their activity would provide a powerful research and clinical tool. GPCR signaling is currently recognized as a multidimensional process governed by molecular, spatial and temporal components. Uncovering the role of each of these dimensions is crucial to improve our knowledge on cell communication, to understand how different pathways give rise to cellular and physiological effects, and to know how can we interact with biological systems with precision using drugs. Photopharmacology is an emerging field in which light-sensitive molecules are used to control the function of a given target protein in native tissues. The modulation of the target activity is achieved by small, drug-like, photoregulated ligands. By the use of light, both spatial and temporal control of the compound activity can be achieved in unprecedented manners compared to conventional pharmacology. These ligands have the potential to provide highly precise and controllable therapeutic actions that may result in increased efficacies and reduced side effects. Importantly, photopharmacology may allow to gain mechanistic insight on the interplay between the activation time and the receptor location during signaling processes in non-modified cells, tissues and whole organisms. Our research focused on the generation of new molecular tools for beta-adrenoceptors photopharmacology will be presented in this communication. First, several libraries of light-sensitive compounds with the aim to regulate ß-AR activity with spatiotemporal precision were designed and synthesized. Subsequent testing in cell preparations demonstrated the successful development of compounds with promising pharmacological properties, which can be reversibly and irreversibly controlled by light. Among those, several hit compounds were identified as ligands for beta-1 and beta-2 adrenoceptors with low nanomolar activities. These libraries compounds were found to be active enough to become useful photopharmacological tools, so we also performed in vivo experiments to determine their research potential in physiological environments. Indeed, the discovered molecules enabled a fine control of ß-AR in their native environment. We believe that the results of these studies will certainly open the door to innovative research procedures and may inspire future therapies targeting ß-AR

    Caged-carvedilol as a new tool for visible-light photopharmacology of β-adrenoceptors in native tissues

    Get PDF
    Adrenoceptors are G protein-coupled receptors involved in a large variety of physiological processes, also under pathological conditions. This is due in large part to their ubiquitous expression in the body exerting numerous essential functions. Therefore, the possibility to control their activity with high spatial and temporal precision would constitute a valuable research tool. In this study, we present a caged version of the approved non-selective β-adrenoceptor antagonist carvedilol, synthesized by alkylation of its secondary amine with a coumarin derivative. Introducing this photo-removable group abolished carvedilol physiological effects in cell cultures, mouse isolated perfused hearts and living zebrafish larvae. Only after visible light application, carvedilol was released and the different physiological systems were pharmacologically modulated in a similar manner as the control drug. This research provides a new photopharmacological tool for a wide range of research applications that may help in the development of future precise therapies.We thank Maria José Bleda (IQAC-CSIC, Barcelona), Ignacio Pérez (IQAC-CSIC, Barcelona), Yolanda Pérez (IQAC-CSIC, Barcelona) and Carme Serra (SimChemSiMChem, IQAC-CSIC, Barcelona) for technical support. We thank Dr. Kees Jalink (The Netherlands Cancer Institute, Amsterdam, the Netherlands) for providing the plasmids encoding for the Epac-SH188 biosensor. We thank the University of Vic-Central University of Catalonia (UVic-UCC), Dr. Malu Calle and Dr. Marta Otero for the material assignment which helped in some biological assays. This work was supported by ERDF-FEDER European Fund (projects CTQ2017-89222-R) and by the Catalan government (2017SGR 1604) to AL. Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (PID2020-120499RB-I00) supported XR and AL. XR research was financed by the Spanish Ministry of Economy, Industry and Competitiveness (SAF2015-74132-JIN). MF was supported by the “Agencia Estatal deInvestigación” from the Spanish Ministry of Science and Innovation and the IDAEA-CSIC, a Centre of Excellence Severo Ochoa (CEX2018-000794-S). ARS has a consolidated Miguel Servet contract and was financed by by the Catalan government (2017-SGR-1807). ADC received the support of a fellowship from “la Caixa” Foundation (ID 100010434) under the fellowship codeLCF/BQ/DE18/11670012.Peer reviewe

    Combining Hyperspectral Imaging and Chemometrics to Assess and Interpret the Effects of Environmental Stressors on the Organism at Tissue Level

    Full text link
    Changes on an organism by the exposure to environmental stressors may be characterized by hyperspectral images (HSI), which preserve the morphology of biological samples, and suitable chemometric tools. The approach proposed allows assessing and interpreting the effect of contaminant exposure on heterogeneous biological samples monitored by HSI at specific tissue levels. In this work, the model example used consists of the study of the effect of the exposure of chlorpyrifos-oxon on zebrafish tissues. To assess this effect, unmixing of the biological sample images followed by tissue-specific classification models based on the unmixed spectral signatures is proposed. Unmixing and classification are performed by multivariate curve resolution-alternating least squares (MCR-ALS) and partial least squares-discriminant analysis (PLS-DA), respectively. Crucial aspects of the approach are: (1) the simultaneous MCR-ALS analysis of all images from 1 population to take into account biological variability and provide reliable tissue spectral signatures, and (2) the use of resolved spectral signatures from control and exposed populations obtained from resampling of pixel subsets analyzed by MCR-ALS multiset analysis as information for the tissue-specific PLS-DA classification models. Classification results diagnose the presence of a significant effect and identify the spectral regions at a tissue level responsible for the biological change

    Zebrafish models for human acute organophosphorus poisoning

    Get PDF
    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning
    corecore