56 research outputs found

    The Structure of theCyprinid herpesvirus 3ORF112-Zα·Z-DNA Complex Reveals a Mechanism of Nucleic Acids Recognition Conserved with E3L, a Poxvirus Inhibitor of Interferon Response

    Get PDF
    In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.FCT grants: PTDC/BIA-PRO/112962/2009; IF/00641/2013; SFRH/BD/51626/2011

    MCPIP1 functions as a safeguard of early embryonic development

    Get PDF
    Monocyte chemoattractant protein-induced protein 1 (MCPIP1), also called Regnase-1, is an RNase that has been described as a key negative modulator of inflammation. MCPIP1 also controls numerous tumor-related processes, such as proliferation, apoptosis and differentiation. In this study, we utilized a zebrafish model to investigate the role of Mcpip1 during embryogenic development. Our results demonstrated that during embryogenesis, the expression of the zc3h12a gene encoding Mcpip1 undergoes dynamic changes. Its transcript levels gradually increase from the 2-cell stage to the spherical stage and then decrease rapidly. We further found that ectopic overexpression of wild-type Mcpip1 but not the catalytically inactive mutant form resulted in an embryonic lethal phenotype in zebrafish embryos (24 hpf). At the molecular level, transcriptomic profiling revealed extensive changes in the expression of genes encoding proteins important in the endoplasmic reticulum stress response and in protein folding as well as involved in the formation of primary germ layer, mesendoderm and endoderm development, heart morphogenesis and cell migration. Altogether, our results demonstrate that the expression of zc3h12a must be tightly controlled during the first cell divisions of zebrafish embryos and that a rapid decrease in its mRNA expression is an important factor promoting proper embryo development

    C-reactive protein and complement as acute phase reactants in common carp Cyprinus carpio during CyHV-3 infection

    Get PDF
    Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a highly virulent and lethal disease of common carp Cyprinus carpio and its ornamental koi varieties. However, specific knowledge about immune mechanisms behind the infection process is very limited. We aimed to evaluate the effect of the CyHV-3 infection on the profile of 2 major components of the common carp immune acute phase response: the C-reactive protein (CRP) and the complement system. Common carp were infected with CyHV-3 by bath immersion. Fish were sampled before the infection and at 6, 12, 24, 72, 120 and 336 h post-infection for serum and head kidney, liver, gill and spleen tissues. CRP levels and complement activity were determined from the serum, whereas CRP- and complement-related genes (crp1, crp2, c1rs, bf/c2, c3, masp2) expression profiles were analysed in the tissues by quantitative PCR. Both CRP levels and complement activity increased significantly up to 10- and 3-fold, respectively, in the serum of infected fish during the challenge. Analysis revealed distinct organ- and time-dependent expression profile patterns for all selected genes. These results suggest that CRP and complement behave as acute phase reactants to CyHV-3 infection in common carp with an organ- and time-dependent response

    Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells

    Get PDF
    Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a mortal and highly contagious disease in common and koi carp. The skin is the major portal of entry of CyHV-3 in carp after immersion in water containing the virus. In the present study, we used in vivo bioluminescence imaging to investigate the effect of skin mucus removal and skin epidermis lesion on CyHV-3 entry. Physical treatments inducing removal of the mucus up to complete erosion of the epidermis were applied on a defined area of carp skin just before inoculation by immersion in infectious water. CyHV-3 entry in carp was drastically enhanced on the area of the skin where the mucus was removed with or without associated epidermal lesion. To investigate whether skin mucus inhibits CyHV-3 binding to epidermal cells, tail fins with an intact mucus layer or without mucus were inoculated ex vivo. While electron microscopy examination revealed numerous viral particles bound on the fins inoculated after mucus removal, no particle could be detected after infection of mucus-covered fins. Finally, anti-CyHV-3 neutralising activity of mucus extract was tested in vitro. Incubation of CyHV-3 with mucus extract reduced its infectivity in a dose dependent manner. The present study demonstrates that skin mucus removal and epidermal lesions enhance CyHV-3 entry in carp. It highlights the role of fish skin mucus as an innate immune protection against viral epidermal entry

    Knowns and unknowns of TiLV-associated neuronal disease

    Get PDF
    Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field

    Proteomic analysis of carp seminal plasma provides insights into the immune response to bacterial infection of the male reproductive system

    Get PDF
    Aeromonas salmonicida is recognized as a significant bacterial pathogen in ulcerative disease of cyprinid fish. However, the mechanism of immunity to these bacteria in common carp is still not well understood, especially the immune regulation in the gonad to bacterial infection. The aims of our study were to analyze changes in the seminal plasma proteome following A. salmonicida infection in carp males. The observed pathological changes in the tissue (liver, spleen, kidney and testis) morphology and upregulation of immune-related genes (tnfa2, il6a) confirmed the successful infection challenge. Using mass spectrometry-based label-free quantitative proteomics, we identified 1402 seminal plasma proteins, and 44 proteins (20 up- and 24 downregulated) were found to be differentially abundant between infected and control males. Most differentially abundant proteins were involved in the immune response mechanisms, such as acute phase response, complement activation and coagulation, inflammation, lipid metabolism, cell-cell and cell-matrix adhesion, creatine-phosphate biosynthesis and germ cell-Sertoli cell junction signaling. Bacterial infection also caused profound changes in expression of selected genes in the testis and hematopoietic organs, which contributed to changes in seminal proteins. The altered seminal proteins and bacterial proteins in seminal plasma may serve as valuable markers of infection in the testis
    corecore