93 research outputs found

    [1,2,5]Thiadiazolo[3,4-d]Pyridazine as an Internal Acceptor in the D-A-π-A Organic Sensitizers for Dye-Sensitized Solar Cells

    Get PDF
    Four new D-A-π-A metal-free organic sensitizers for dye-sensitized solar cells (DSSCs), with [1,2,5]thiadiazolo[3,4-d]pyridazine as internal acceptor, thiophene unit as π-spacer and cyanoacrylate as anchoring electron acceptor, have been synthesized. The donor moiety was introduced into [1,2,5]thiadiazolo[3,4-d]pyridazine by nucleophilic aromatic substitution and Suzuki cross-coupling reactions, allowing design of D-A-π-A sensitizers with the donor attached to the internal heterocyclic acceptor not only by the carbon atom, as it is in a majority of DSSCs, but by the nitrogen atom also. Although low values of power conversion efficiency (PCE) were found, a few important consequences were identified: (i) poor PCE data can be attributed to high electron deficiency of the internal [1,2,5]thiadiazolo[3,4-d]pyridazine acceptor due to lower light harvesting by the dye; (ii) the manner in which the donor was attached to the internal acceptor (by carbon or nitrogen) did not play an essential role in the photovoltaic properties of the dyes; (iii) dyes based on the novel donor 2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazolyl and 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H- carbazole moieties showed similar photovoltaic properties to dyes based on the well-known 4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indolyl building block, which opens the door for further optimization potential of new dye families

    Novel D-A-π-A1 Type Organic Sensitizers from 4,7-Dibromobenzo[d][1,2,3]thiadiazole and Indoline Donors for Dye-Sensitized Solar Cells

    Get PDF
    Two novel D-A-π-A1 metal-free organic dyes of the KEA series containing benzo[d][1,2,3]thiadiazole (isoBT) internal acceptor, indoline donors fused with cyclopentane or cyclohexane rings (D), a thiophene as a π-spacer, and a cyanoacrylate as an anchor part were synthesized. Monoarylation of 4,7-dibromobenzo[d][1,2,3]thiadiazole by Suzuki-Miyamura cross-coupling reaction showed that in the case of indoline and carbazole donors, the reaction was non-selective, i.e., two monosubstituted derivatives were isolated in each case, whereas only one mono-isomer was formed with phenyl- and 2-thienylboronic acids. This was explained by the fact that heterocyclic indoline and carbazole fragments are much stronger donor groups compared to thiophene and benzene, as confirmed by cyclic voltammetry measurements and calculation of HOMO energies of indoline, carbazole, thiophene and benzene molecules. The structure of monoaryl(hetaryl) derivatives was strictly proven by NMR spectroscopy and X-ray diffraction. The optical and photovoltaic properties observed for the KEA dyes showed that these compounds are promising for the creation of solar cells. A comparison with symmetrical benzo[c][1,2,3]thiadiazole dyes WS-2 and MAX114 showed that the asymmetric nature of benzo[d][1,2,3]thiadiazole KEA dyes leads to a hypsochromic shift of the ICT band in comparison with the corresponding benzo[c][1,2,5]thiadiazole isomers. KEA dyes have a narrow HOMO-LUMO gap of 1.5–1.6 eV. Amongst these dyes, KEA321 recorded the best power efficiency (PCE), i.e., 5.17%, which is superior to the corresponding symmetrical benzo[c][1,2,3]thiadiazole dyes WS-2 and MAX114 (5.07 and 4.90%)

    Fused 1,2,3-dithiazoles: convenient synthesis, structural characterization, and electrochemical properties

    Get PDF
    A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives, a novel dithiazole rearrangement (15→13) featuring unexpected movement of the dithiazole ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of 4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction. Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was observed, most likely including hydrodechlorination at a low potential

    Dye-sensitized solar cells: Investigation of D-A-π-A organic sensitizers based on [1,2,5]selenadiazolo[3,4-c]pyridine

    Get PDF
    The authors gratefully acknowledge financial support from the Russian Science Foundation (grant no. 15-13-10022). Wenjun Wu thanks the Scientific Committee of Shanghai (14ZR1409700) for financial support. The authors thank the Leverhulme Trust for an International Network grant.We report two series of D-A-π-A metal-free organic sensitizers for dye-sensitized solar cells (DSSCs) based on triphenylamine and N-hexyl-carbazole as electronic donors, respectively. Through varying auxiliary acceptors and π-spacers, several significant consequences on cell efficiency were identified: (i) a broadened UV-Vis absorption spectrum and low-lying LUMO level with [1,2,5]selenadiazolo [3,4-c] pyridine as auxiliary acceptor; (ii) compensation for the absorption valley around 400 nm in the UV-vis spectra by the introduction of a thiophene unit into the π-bridge; (iii) effective improvement of the power conversion efficiency (PCE) by means of cosensitization, leading to dye OKT-1 , 3.10% PCE, increased to 4.19% with squaraine dye SQ2 as co-sensitizer. The design criteria identified have opened the door for further optimization of this new dye family.PostprintPeer reviewe

    Synthesis and properties of the heterospin (S1 = S2 = 1/2) radical-ion salt bis(mesitylene)molybdenum(I) [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazolidyl

    Get PDF
    The authors are grateful to the Presidium of the Russian Academy of Sciences (Project 8.14), the Royal Society (RS International Joint Project 2010/R3), the Leverhulme Trust (Project IN-2012-094), the Siberian Branch of the Russian Academy of Sciences (Project 13), the Ministry of Education and Science of the Russian Federation (Project of Joint Laboratories of Siberian Branch of the Russian Academy of Sciences and National Research Universities), and the Russian Foundation for Basic Research (Projects 13-03-00072 and 15-03-03242) for financial support of various parts of this work. N.A.S. thanks the Council for Grants of the President of Russian Federation for postdoctoral scholarship (grant MK-4411.2015.3). B.E.B. is grateful for an EaStCHEM Hirst Academic Fellowship. A.V.Z. thanks the Foundation named after D. I. Mendeleev, Tomsk State University, for support of his work.Low-temperature interaction of [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (1) with MoMes2 (Mes = mesitylene / 1,3,5-trimethylbenzene) in tetrahydrofuran gave the heterospin (S1 = S2 = 1/2) radical-ion salt [MoMes2]+[1]– (2) whose structure was confirmed by single-crystal X-ray diffraction (XRD). The structure revealed alternating layers of the cations and anions with the Mes ligands perpendicular, and the anions tilted by 45°, to the layer plane. At 300 K the effective magnetic moment of 2 is equal to 2.40 μB (theoretically expected 2.45 μB) and monotonically decreases with lowering of the temperature. In the temperature range 2−300 K, the molar magnetic susceptibility of 2 is well-described by the Curie-Weiss law with parameters C and θ equal to 0.78 cm3⋅K⋅mol–1 and −31.2 K, respectively. Overall, the magnetic behavior of 2 is similar to that of [CrTol2]+[1]– and [CrCp*2]+[1]–, i.e. changing the cation [MAr2]+ 3d atom M = Cr (Z = 24) with weak spin-orbit coupling (SOC) to a 4d atom M = Mo (Z = 42) with stronger SOC does not affect macroscopic magnetic properties of the salts. For the XRD structure of salt 2, parameters of the Heisenberg spin-Hamiltonian were calculated using the broken-symmetry DFT and CASSCF approaches, and the complex 3D magnetic structure with both the ferromagnetic (FM) and antiferromagnetic (AF) exchange interactions was revealed with the latter as dominating. Salt 2 is thermally unstable and slowly loses the Mes ligands upon storage at ambient temperature. Under the same reaction conditions, interaction of 1 with MoTol2 (Tol = toluene) proceeded with partial loss of the Tol ligands to afford diamagnetic product.PostprintPostprintPeer reviewe

    5,5′-(Piperazine-1,4-diyl)bis(4-chloro-3<i>H</i>-1,2-dithiol-3-one)

    No full text
    Conjugates of 3H-1,2-dithiol-3-ones with various biologically active compounds are intensively investigated. Although many derivatives of this class have been described in the literature, the compounds containing two dithiole cycles have been explored much less. In this communication, it was shown that the reaction of 4,5-dichloro-3H-1,2-dithiol-3-one with piperazine can selectively lead to the mono-product, 4-chloro-5-piperazin-1-yl-3H-1,2-dithiol-3-one and bis-product, 5,5′-(piperazine-1,4-diyl)bis(4-chloro-3H-1,2-dithiol-3-one). The structure of the synthesized compounds was established by elemental analysis, high resolution mass-spectrometry, 1H, 13C NMR and IR spectroscopy, and mass-spectrometry
    corecore