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Abstract  

The novel donor building-block - 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole was 

designed and employed in the synthesis of dye-sensitized solar cell (DSSCs). An effective, 

high-yielding synthesis of 4,6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-(p-tolyl)-

1,2,3,4,4a,9a-hexahydrocarbazole from 1,2,3,4,4a,9a-hexahydrocarbazole was realized. Three 

new metal-free organic sensitizers, containing the new donor building block were prepared by 

a stepwise approach from 4,7-dibromobenzo[c][1,2,5]chacogenadiazoles. A 2,1,3-

Benzothiadiazole dye containing hexahydrocarbazole donor, thiophene as π-spacer and 

cyanoacrylate as anchoring electron acceptor showed photovoltaic properties higher than the 

well-known WS-2 sensitizer with PCE = 5.86%. Although benzoxa- and –selenadiazole dyes 

have a bathochromic shift (24-30 nm) in the UV-vis spectra, and smaller energy gap Eg (about 

0.1 eV), they have lower photovoltaic parameters, including PCE of 1.5-2.3%. Introducing a 

new donor 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole into the construction of the 

DSSCs has broadened possibilities for the optimization of their photovoltaic properties.  
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1. Introduction 

In the last couple of decades, dye-sensitized solar cells (DSSCs) have attracted worldwide 

research attention due to their potential for low cost production, easy fabrication and relatively 

high power conversion efficiency [1-3]. A dye sensitizer, a photoanode, a redox electrolyte and 

a counter electrode are the essential components for a typical DSSC. Among other components 

of DSSCs, the dye sensitizer is responsible for harvesting sunlight, initiating charge transfer, 

and injecting electrons into the photoanode. Efficient sensitizers have been developed based 

on ruthenium polypyridine complexes, zinc porphyrins [4-6] and metal-free organic dyes, 

among which the latter have been most intensively investigated [7-11]. Most typical organic 

dyes are designed with a donor-π-bridge-acceptor (D-π-A) configuration due to easy synthesis 

and efficient intramolecular charge transfer (ICT) properties [12-15]. The electronic interaction 

between donor (D) and acceptor (A) results in strong charge-transfer absorption bands that 

harvest sunlight for photon-to-electron conversion. Recently, Zhu and Tian proposed a new 

concept of the D–A–π–A motif for designing a generation of stable and efficient organic dyes 

[16-18]. Compared to D–π–A dyes, the properties of D–A–π–A dyes can be readily adjusted 

by incorporation of an auxiliary acceptor between the donor and π-bridge, which broadens the 

absorption and enhances efficient ICT for high performance DSSCs [19]. Some electron-

withdrawing heterocyclic systems, such as diketopyrrolopyrrole, benzotriazole, 

benzothiadiazole, quinoxaline, benzoselenadiazole, pyridazinothiadiazole and many others 

have been used to design a D-A-π-A framework [20-25]. It was reported that the auxiliary 

acceptor is beneficial for extending absorption wavelength and enhancing the electron 

coupling, thus greatly improving photovoltaic properties and the stability of organic sensitizers 

[18]. Furthermore, the evolution of the π-bridge unit is essential in the molecular engineering 

of sensitizers, due to enhanced light absorption and photoinduced charge separation, as well as 

delayed charge recombination [26]. The most common electron withdrawing group widely 

employed as terminal acceptor is cyanoacrylic acid due to its strong binding on the surface of 

mesoporous TiO2 through carboxylic acid anchoring groups [27]. Various other molecular 

engineering methods to improve the light harvesting efficiency of organic dyes involve an 

increase in the electronic richness of the donor moieties [28]. Introduction of electron-rich 

moieties on the donor segment helps to broaden the absorption spectra, and attachment of 

energy delocalizing chromophores causes prolongation of excited state lifetime and facilitates 

the electron injection into the conduction band of TiO2 [29]. In general, triarylamine, indoline, 

tetrahydroquinoline, phenothiazine, phenoxazine are routinely used as donors [30]. 4-(p-
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Tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole donor has been shown to be one of the 

most effective donors [20,22]. A few attempts to modify this moiety with a change of p-tolyl 

to other aryl groups have been made [31-39], but they have not achieved significant success. 

In this work we aimed to design a new donor building block - 9-(p-tolyl)-

2,3,4,4a,9,9a-hexahydro-1H-carbazole, which is varied from 4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indole by one extra CH2 group, and to investigate the influence of this 

group on the photovoltaic properties of the organic sensitizers. Three novel dyes with various 

chalcogen atoms (oxygen, sulfur and selenium) in 2,1,3-benzochalcogenadiazole internal 

acceptor were synthesized and studied. The optical, electrochemical and photophysical 

properties of these dyes were investigated to disclose important design criteria for the discovery 

of further new organic dyes. 

2. Experimental details 

2.1. Materials 

The reagents were purchased from commercial sources and used as received. Solvents were 

purified by distillation from the appropriate drying agents.  

2.2.Synthesis and characterization of compounds: 

2.2.1. Synthesis of 4,6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-(p-tolyl)-

1,2,3,4,4a,9a-hexahydrocarbazole 4. 

2,9-(p-Tolyl)-1,2,3,4,4a,9a-hexahydrocarbazole 2.  

In 50 ml round-bottom flask, 1,2,3,4,4a,9a-hexahydrocarbazole 1 (520 mg, 3 mmol), p-

bromotoluene (513 mg, 3 mmol), cesium carbonate (1.36 g, 4.2 mmol), palladium acetate (3.5 

mg, 15μmol), tris-tert-butylphosphine (72 μl, 0.3 mmol) and 10 ml dry xylene were added. 

After boiling for 20 h under argon, the mixture was diluted with petroleum ether and purified 

on a silica gel column to obtain colorless oil, 2 (715 mg, 80%). 1H NMR (300 MHz, δ, ppm): 

7.24 (m, 4H), 7.20 (d, J=2.8 Hz, 1H), 7.10 (t, J=7.6 Hz, 1H), 6.82 (t, J=7.6 Hz, 1H), 6.80 (d, 

J=7.6 Hz, 1H), 4.10 (m, 1H), 3.28 (m, 1H), 2.43 (s, 3H), 1.91-1.72 (m, 4H), 1.63-1.57 (m, 2H), 

1.50-1.42 (m, 2H). 13C NMR (75 MHz, δ, ppm): 149.36, 141.05, 134.91, 133.04, 129.87, 

126.98, 123.18, 123.02, 118.62, 109.02, 64.66, 40.64, 28.25, 25.89, 22.92, 21.30, 20.95. 

HRMS-ESI (m/z): [M]+ calcd for (C19H21N) 263.1667, found 263.1670, [M+H]+ calcd for 

(C19H22N) 264.1747, found 264.1744. IR, ν, cm-1: 3404, 2939, 2905, 2846, 1579, 1470, 1435, 

1311, 1273, 1233, 1047, 971, 862, 798, 586, 485. Rf=0.41 (petroleum ether/ ethylacetate = 

25:1). 
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3,6-Bromo-9-(p-tolyl)-1,2,3,4,4a,9a-hexahydrocarbazole 3.  

To a solution of 2 (450 mg, 1.7 mmol) and DMSO (133μl, 1,9 mmol) in 15 ml ethylacetate was 

added dropwise hydrobromic acid (48%, 0.45 ml, 3.76 mmol) at 60 ºC. After 5 minutes K2CO3 

was added (300 mg) and the mixture was stirred another 1 h. After cooling down to room 

temperature the mixture was diluted with ethyl acetate, washed with water, and evaporated 

under reduced pressure. The organic layer was evaporated, the residue was purified on a silica 

gel column with petroleum ether to obtain colorless oil, 3 (494 mg, 85%). The sample was used 

in the next step as it is. 

4,6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-9-(p-tolyl)-1,2,3,4,4a,9a-

hexahydrocarbazole 4.  

In 25 ml round-bottom flask compound 3 (480 mg, 1.4 mmol), B2Pin2 (540 mg, 2.14 mmol), 

and potassium acetate (480 mg) were dissolved in 10 ml of dioxane. The solution was degassed 

for 20 minutes with a stream of argon, Pd2dba3 (9.5 mg, 10 μmol) and X-Phos (20 mg, 40 μmol) 

were added simultaneously. The reaction was then brought to 80 °C for 8 h, and then diluted 

with ethylacetate and filtered through a thin pad of celite. The mixture was evaporated and the 

compound purified on a silica gel column with a ethylacetate/petroleum ether mixture 1/50 as 

eluent to obtain a pale yellow oil, 4 (450 mg, 82%). 1H NMR (300 MHz, δ, ppm): 7.66 (s, 1H), 

7.63 (d, J=8 Hz, 1H), 7.23 (q, J=8.5 Hz, 4H), 6.77 (d, J=7.9 Hz, 1H), 4.12 (m, 1H), 3.28 (m, 

1H), 2.42 (s, 3H), 1.91-1.72 (m, 4H), 1.63-1.57 (m, 2H), 1.41 (m, 14H). 13C NMR (75 MHz, 

δ, ppm): 152.15, 140.28, 135.04, 134.01, 133.54, 129.93, 129.49, 123.37, 108.14, 83.23, 64.77, 

40.31, 27.97, 25.89, 25.00, 24.83, 22.75, 21.22, 20.98. HRMS-ESI (m/z): [M+H]+ calcd for 

(C25H32NBO2) 390.2603, found 390.2603. IR, ν, cm-1: 3237, 2929, 2858, 1603, 1515, 1460, 

1382, 1233, 1198, 815, 739, 642. Rf = 0,34 (petroleum ether/ ethylacetate = 10:1). 

2.2.2. General procedure for the cross-coupling of 4,7-

dibromobenzo[c][1,2,5]chalcogenadiazoles 5 and boronic ester 4. 

In 50 ml round-bottom flask, 4 (450 mg, 1.2 mmol) and 4,7-dibromobenzo-1,2,5-

chalcogenadiazole 5 (1.2 mmol) were dissolved in 15 ml of dioxane, and 2 M K2CO3 (10 ml) 

was added. The mixture was degassed for 20 minutes with a stream of argon, after which time 

Pd(PPh3)4 (67 mg, 60 μmol, 5%) was added. After refluxing for 10 h, the mixture was extracted 

with ethylacetate; organic solvent was then removed under reduced pressure. The residue was 

purified on a silica gel column with eluent ethylacetate/petroleum ether = 1:25. 

4-Bromo-7-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-

yl)benzo[c][1,2,5]thiadiazole (6a) 
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Orange solid with mp 127-129 ºC (330 mg, 58%). 1H NMR (300 MHz, δ, ppm): 7.88 (d, J=7.6 

Hz, 1H), 7.73 (s, 1H), 7.65 (d, J=8.3 Hz, 1H), 7.52 (d, J=7.7 Hz, 1H), 7.22 (m, 4H), 6.86 (d, 

J=8.3 Hz, 1H), 4.17 (m, 1H), 3.35 (m, 1H), 2.39 (s, 3H), 1.97-1.87 (m, 1H), 1.84-1.72 (m, 3H), 

1.62-1.41 (m, 4H). 13C NMR (75 MHz, δ, ppm): 154.1, 153.5, 150.1, 140.3, 135.5, 134.8, 

133.7, 132.5 130.0, 128.7, 126.9, 126.7, 124.2, 123.2, 111.1, 108.8, 64.8, 40.6, 28.3, 25.9, 22.8, 

21.2, 21.0. HRMS-ESI (m/z): [M+H]+ calcd for (C25H22BrN3S) 476.0791, found 476.0792. 

UV-Vis (CH2Cl2, λmax, nm/logε): 276/4.38, 415/3.83. IR, ν, cm-1: 2923, 2852, 1605, 1513, 

1466, 1377, 1328, 1256, 883, 807, 506. Rf = 0.37 (15 petroleum ether/1 ethylacetate). 

4-Bromo-7-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-yl)benzo[c][1,2,5]oxadiazole 

(6b) 

Orange solid with mp 142-144 ºC (328 mg, 65%). 1H NMR (300 MHz, δ, ppm): 7.80 (s, 1H), 

7.73 (d, J=8.4 Hz, 1H), 7.64 (d, J=7.5 Hz, 1H), 7.35 (d, J=7.5 Hz, 1H), 7.22 (q, J=8.5 Hz, 4H), 

6.82 (d, J=8.3 Hz, 1H), 4.18 (m, 1H), 3.34 (m, 1H), 2.40 (s, 3H), 1.98-1.88 (m, 1H), 1.84-1.72 

(m, 3H), 1.62-1.41 (m, 4H). 13C NMR (75 MHz, δ, ppm): 150.9, 150.2, 149.0, 139.9, 135.8, 

134.7, 134.0, 130.1, 128.2, 125.8, 124.8, 123.4, 112.1, 108.9, 104.8, 64.9, 40.5, 28.2, 25.9, 

22.7, 21.2, 21.1. HRMS-ESI (m/z): [M+H]+ calcd for (C25H22BrN3O) 462.1000, found 

462.0989. UV-Vis (CH2Cl2, λmax, nm/logε): 310/4.21, 480/4. IR, ν, cm-1: 2925, 2853, 1606, 

1514, 1482, 1380, 1269, 806. Rf=0,46 (10 petroleum ether/1 ethylacetate).  

4-Bromo-7-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-

yl)benzo[c][1,2,5]selenadiazole (6c) 

Orange solid with mp 178-180 ºC (410 mg, 65%) 1H NMR (300 MHz, δ, ppm): 7.80 (d, J=7.5 

Hz, 1H), 7.64 (s, 1H), 7.57 (d, J=8.2 Hz, 1H), 7.35 (d, J=7.5 Hz, 1H), 7.22 (m, 4H), 6.85 (d, 

J=8.2 Hz, 1H), 4.17 (m, 1H), 3.34 (m, 1H), 2.39 (s, 3H), 1.93-1.71 (m, 4H), 1.63-1.53 (m, 2H), 

1.47-1.39 (m, 2H). 13C NMR (75 MHz, δ, ppm): 158.8, 158.7, 149.9, 140.3, 136.4, 135.2, 

133.5, 132.5, 129.9, 128.9, 127.5, 126.7, 124.4, 123.1, 113.8, 108.6, 64.7, 40.5, 28.2, 25.8, 

22.8, 21.1, 20.9. HRMS-ESI (m/z): [M+H]+ calcd for (C25H22BrN3Se) 524.0234, found 

524.0224. UV-Vis (CH2Cl2, λmax, nm/logε): 323/4.56, 495/3.99. IR, ν, cm-1: 2927, 2853, 1605, 

1513, 1481, 1380, 1268, 806. Rf=0,58 (5 petroleum ether/1 ethylacetate).  

2.2.3. General procedure for the cross-coupling reaction of mono-adducts 6a-c and tert-

butyl 2-cyano-3-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2-

yl)acrylate 7. 

In 50 ml round-bottom flask, mono-adduct 6a-c (0.45 mmol) and ester 7 (220 mg, 0.61 mmol) 

were dissolved in 10 ml of dioxane, and then 2M K2CO3 (10 ml) was added. The mixture was 
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degassed for 20 minutes with a stream of argon, Pd(PPh3)4 (30 mg, 26 μmol, 5%) was added. 

After refluxing for 12 h, the mixture was extracted with ethylacetate and solvent was removed 

under reduced pressure. The residue was purified on a silica gel column with eluent 

ethylacetate/petroleum ether = 1:20. 

tert-Butyl 2-cyano-3-(5-(7-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-

yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)acrylate 8a. 

Dark red solid with mp 194-196 ºC (135 mg, 41%). 1H NMR (300 MHz, δ, ppm): 8.28 (s, 1H), 

8.26 (d, J=4.2 Hz, 1H), 8.06 (d, J=7.6 Hz, 1H), 7.89 (d, J=4.1 Hz, 1H), 7.82 (s, 1H), 7.76 (d, 

J=8.6 Hz, 1H) 7.71 (d, J=7.6 Hz, 1H), 7.23 (s, 4H), 6.87 (d, J=8.3 Hz, 1H), 4.19 (m,1H), 3.36 

(m, 1H), 2.39 (s, 3H), 1.97-1.90 (s, 1H) 1.85-1.75 (m, 3H), 1.62 (s, 9H), 1.58-1.40 (m, 4H). 

13C NMR (75 MHz, δ, ppm): 161.8, 154.0, 152.7, 150.2, 149.1, 145.4, 140.1, 137.8, 135.8, 

135.4, 133.6, 129.9, 129.0, 128.0, 127.9, 127.0, 125.9, 124.2, 123.2, 123.0, 116.3, 108.7, 100.1, 

83.4, 64.8, 40.5, 28.2, 28.0, 25.8, 22.7, 21.1, 20.9. HRMS-ESI (m/z): [M]+calcd for 

(C37H34N4O2S2) 630.2118 , found 630.2112. UV-Vis (CH2Cl2, λmax, nm/logε): 318/4.41, 

414/4.31, 523/4.44. IR, ν, cm-1: 2931, 2855, 2180, 1709, 1605, 1585, 1510, 1458, 1363, 1248, 

1152, 808. Rf = 0.44 (petroleum ether/ ethylacetate = 5:1).  

tert-Butyl 2-cyano-3-(5-(7-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-

yl)benzo[c][1,2,5]oxadiazol-4-yl)thiophen-2-yl)acrylate 8b. 

Dark purple solid with mp 120-122 ºC (127 mg, 46%). 1H NMR (300 MHz, δ, ppm): 8.27 (s, 

1H), 8.24 (d, J=4.1 Hz, 1H), 7.90 (s, 1H), 7.83 (m, 3H), 7.57 (d, J=7.5 Hz, 1H), 7.23 (q, J=8.5 

Hz, 4H), 6.85 (d, J=8.3 Hz, 1H), 4.19 (m, 1H), 3.37 (m, 1H), 2.40 (s, 3H), 1.97-1.90 (s, 1H) 

1.85-1.75 (m, 3H), 1.62 (s, 9H), 1.58-1.40 (m, 4H). 13C NMR (75 MHz, δ, ppm): 161.5, 151.0, 

149.0, 148.0, 147.2, 145.2, 139.7, 138.7, 135.7, 135.7, 134.0, 131.3, 130.0, 129.4, 128.9, 128.5, 

125.1, 124.9, 123.3, 118.6, 116.1, 108.8, 100.8, 83.6, 64.9, 40.3, 28.1, 28.0, 25.8, 22.6, 21.0, 

21.0. HRMS-ESI (m/z): [M+H]+ calcd for (C37H34N4O3S) 615.2424, found 615.2411; [M+Na]+ 

calcd for (C37H34N4O3SNa) 637.2244, found 637.2245. UV-Vis (CH2Cl2, λmax, nm/logε): 

310/4.30, 405/4.18, 550/4.41. IR, ν, cm-1: 2927, 2854, 2216, 1702, 1605, 1578, 1513, 1482, 

1370, 1268, 807, 654. Rf = 0.52 (petroleum ether/ ethylacetate = 5:1). 

tert-Butyl 2-cyano-3-(5-(7-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-

yl)benzo[c][1,2,5]selenadiazol-4-yl)thiophen-2-yl)acrylate 8c. 

Dark purple solid with mp 98-100 ºC (192 mg, 49%). 1H NMR (300 MHz, δ, ppm): 8.28 (s, 

1H), 8.15 (d, J=4.1 Hz, 1H), 8.00 (d, J=7.5 Hz, 1H), 7.91 (d, J=4.1 Hz, 1H), 7.74 (s, 1H), 7.67 

(d, J=8.3 Hz, 1H), 7.58 (d, J=7.5 Hz, 1H), 7.22 (s, 4H), 6.86 (d, J=8.3 Hz, 1H), 4.18 (m, 1H), 
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3.36 (m, 1H), 2.40 (s, 3H), 1.97-1.88 (s, 1H) 1.84-1.72 (m, 3H), 1.61 (s, 9H), 1.58-1.40 (m, 

4H). 13C NMR (75 MHz, δ, ppm): 162.0, 159.7, 158.3, 150.2, 149.6, 145.7, 140.3, 137.5, 137.4, 

136.7, 135.3, 133.7, 130.0, 129.3, 128.4, 127.9, 126.3, 124.8, 124.6, 123.2, 116.5, 108.7, 99.9, 

83.5, 64.8, 40.6, 28.3, 28.1, 25.9, 22.7, 21.2, 21.0. HRMS-ESI (m/z): [M+H]+ calcd for 

(C37H34N4O2SSe) 679.1643, found 679.1628. UV-Vis (CH2Cl2, λmax, nm/logε): 326/4.57, 

405/4.33, 550/4.55. IR, ν, cm-1: 2929, 2853, 2215, 1719, 1601, 1511, 1470, 1370, 1278, 1160, 

840, 733. Rf = 0.38 (petroleum ether/ ethylacetate = 5:1).  

2.2.4. General procedure for hydrolyses of ethers 8a-c. 

In a 25 ml round-bottom flask, 8a-c (0.15 mmol, 96 mg, 92 mg and 104 mg respectively) was 

dissolved in a 5 ml solution of 1/3 CF3COOH/CHCl3. After stirring for 4 h under argon, the 

mixture was diluted with dichloromethane, washed with water, and removed under reduced 

pressure. The residue was purified on a silica gel column with eluent 

methanol/dichloromethane/acetic acid = 10:50:1. 

2-Cyano-3-(5-(7-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-

yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)acrylic acid (MAX114) 

Dark red solid with mp >300 ºC (79 mg, 91%). 1H NMR (300 MHz, DMSO-d6, δ, ppm): 8.19 

(m,2H), 8.10 (s, 1H), 7.88 (s, 1H), 7.85 (d, J=7.7 Hz, 1H), 7.79 (m, 2H), 7.23 (m, 4H), 6.80 (d, 

J=8.3 Hz, 1H), 4.21 (m, 1H), 2.32 (s, 3H), 1.90-1.82 (m, 1H) 1.74-1.59 (m, 3H), 1.47-1.33 (m, 

4H). 13C NMR (75 MHz, DMSO-d6, δ, ppm): 162.9, 153.6, 152.5, 149.5, 143.5, 140.2, 139.9, 

138.7, 135.4, 135.1, 133.9, 133.2, 130.4, 129.2, 127.7, 127.6, 127.3, 126.7, 124.5, 123.5, 122.8, 

120.0, 111.5, 108.6, 64.2, 27.9, 25.7, 22.5, 21.1, 21.0. MS-MALDI (m/z): [M]+ calcd for 

(C33H26N4O2S2) 574.1497, found 574.2726. UV-Vis (CH2Cl2/MeOH (2%), λmax, nm/logε): 

365/4.10, 482/4.19. IR, ν, cm-1: 2924, 2853, 2211, 1720, 1610, 1578, 1515, 1474, 1377, 1268, 

806. Rf = 0.47 (ethylacetate/ methanol = 2:1). 

2-Cyano-3-(5-(7-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-

yl)benzo[c][1,2,5]selenadiazol-4-yl)thiophen-2-yl)acrylic acid (MAX115) 

Dark purple solid with mp >300 ºC (83 mg, 88%). 1H NMR (300 MHz, DMSO-d6, δ, ppm): 

8.13 (d, J=4.1 Hz, 1H), 8.08 (m, 2H), 7.81 (s, 1H), 7.77 (d, J=4.1 Hz, 1H), 7.68 (m, 2H), 7.23 

(m, 4H), 6.78 (d, J=8.4 Hz, 1H), 4.20 (m, 1H), 2.32 (s, 3H), 1.90-1.82 (m, 1H) 1.74-1.59 (m, 

3H), 1.47-1.33 (m, 4H). 13C NMR (75 MHz, DMSO-d6, δ, ppm): 163.3, 158.5, 157.32, 148.7, 

144.0, 140.0, 139.8, 138.1, 135.2, 134.5, 134.2, 132.5, 129.9, 129.0, 127.8, 127.2, 127.0, 126.0, 

124.7, 124.4, 122.2, 119.4, 109.9, 107.9, 63.7, 27.4, 25.2, 22.0, 20.6, 20.4. MS-MALDI (m/z): 

[M]+ calcd for (C33H26N4O2SSe) 622.0944, found 622.2408. UV-Vis (CH2Cl2/MeOH (2%), 
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λmax, nm/logε): 375/4.14, 512/4.12. IR, ν, cm-1: 2924, 2853, 2214, 1718, 1604, 1582, 1511, 

1466, 1378, 1271, 1151, 809. Rf = 0.49 (ethylacetate/ methanol = 2:1). 

2-Cyano-3-(5-(7-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-

yl)benzo[c][1,2,5]oxadiazol-4-yl)thiophen-2-yl)acrylic acid (MAX123) 

Dark purple solid with mp >300 ºC (77 mg, 92%). 1H NMR (300 MHz, DMSO-d6, δ, ppm): 

8.17 (s, 1H), 8.06 (d, J=3.9 Hz, 1H), 7.94 (d, J=7.5 Hz, 1H), 7.88 (s, 1H), 7.81 (m, 2H), 7.75 

(d, J=7.6 Hz, 1H), 7.21 (q, J=8.4 Hz, 4H), 6.77 (d, J=8.4 Hz, 1H), 4.21 (m, 1H), 2.32 (s, 3H), 

1.91-1.82 (m, 1H) 1.74-1.64 (m, 2H), 1.62-1.53 (m, 1H), 1.47-1.33 (m, 4H). 13C NMR (75 

MHz, DMSO-d6, δ, ppm): 164.5, 150.1, 148.9, 148.0, 142.8, 141.3, 140.0, 138.1, 136.5, 135.7, 

133.4, 130.4, 129.6, 129.2, 128.6, 128.2, 126.6, 124.9, 123.3, 122.8, 119.2, 118.4, 109.4, 108.6, 

64.2, 27.8, 25.6, 22.4, 21.0. MS-MALDI (m/z): [M]+ calcd for (C33H26N4O3S) 558.1725, found 

558.2721. UV-Vis (CH2Cl2/MeOH (2%), λmax, nm/logε): 367/3.66, 506/3.85. IR, ν, cm-1: 2930, 

2855, 2214, 1715, 1586, 1512, 1482, 1370, 1266, 1153, 808. Rf = 0.51 (ethylacetate/ methanol 

= 2:1). 

 

 

Scheme 1. Chemical structures of MAX114, MAX123 and MAX115. 
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Scheme 2. Synthesis of new donor building block 1. The reaction conditions: (i) Pd(OAc)2, 

PtBu3, Cs2CO3, xylene; (ii) HBr, DMSO, ethylacetate (iii) B2Pin2, KOAc, Pd2dba3, X-Phos, 

dioxane. 

 

 

Scheme 3. Synthesis of sensitizers. The reaction conditions: (i) Pd(PPh3)4, K2CO3, dioxane; 

(ii) CF3COOH, CHCl3  

3. Results and Discussion 

3.1 Synthesis and characterization 

The molecular structures of the dyes, containing the novel donor building-block - 9-(p-tolyl)-

2,3,4,4a,9,9a-hexahydro-1H-carbazole, are shown in Scheme 1. 4,6-(4,4,5,5-Tetramethyl-

1,3,2-dioxaborolan-2-yl)-9-(p-tolyl)-1,2,3,4,4a,9a-hexahydrocarbazole 4 was prepared in four 

steps from 1,2,3,4,4a,9a-hexahydrocarbazole 1 Scheme 2. Buchwald-Hartwig arylation of 

hexahydrocarbazole with p-iodotoluene in the presence of Pd(OAc)2, PtBu3 and Cs2CO3 in 

xylene afforded the p-tolyl derivative in good yield (80%). Bromination of the aromatic ring 

with a mixture of HBr and DMSO followed by Miayura borylation with 4,4,4',4',5,5,5',5'-

octamethyl-2,2'-bi(1,3,2-dioxaborolane) in the presence of palladium catalyst Pd2dba3, ligand 

X-Phos and KOAc in 1,4-dioxane gave key the donor component in good yield. 
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The general strategy for the synthesis of dyes with D-A1-π-A2 motif follows a stepwise 

approach shown in Scheme 3. Internal acceptors A1 - 4,7-dibromobenzo[c][1,2,5]thiadiazole 

5a [41], 4,7-dibromobenzo[c][1,2,5]oxadiazole 5b [42] 4,7-

dibromobenzo[c][1,2,5]selenadiazole 5b [43] and π-spacer-acceptor moiety - tert-butyl (2-

cyano-3-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2-yl)acrylate [44] were 

prepared by known procedures. The cross-coupling reactions of 4,7-

dibromobenzo[c][1,2,5]chalcogenadiazoles (5) with donor boronic ester 4 in the presence of 

Pd(PPh3)4 as a catalyst and aqueous solution K2CO3 in THF successfully gave mono-adducts 

6a-c in moderate yields. The second cross-coupling of 7-

bromobenzo[c][1,2,5]chalcogenadiazoles 6a-c with acceptor tert-butyl ester gave bis-adducts 

8a-c in high yields. Final hydrolysis of compounds 8a-c with CF3CO2H resulted in the 

formation of the target MAX dyes in high yields. All dyes were purified by column 

chromatography before measurement of the physical and electrochemical properties as well as 

solar cell device fabrication. 

 

3.2 Photophysical and electrochemical properties 

The response region in sunlight for DSSCs is determined primarily by the UV-Vis absorption 

of the sensitizer. Therefore, we initially characterized the spectral response of the MAX series 

in DCM/MeOH (V/V = 98/2) at 4×10-5 mol L-1 (Fig. 1). The absorption peaks (λmax) and their 

corresponding molar absorption coefficients (ε) are listed in Table 1. As shown in Fig. 1, all 

these dyes exhibit two absorption regions. The absorption peaks between 350-400 nm mainly 

correspond to the π-π* electron transition. The broad absorption bands in the 450-550 nm 

region are assigned to an intramolecular charge transfer (ICT) process between the donor and 

anchor/acceptor group, which produces the efficient charge-separated excited state. Despite the 

fact that the extinction coefficient of the sulfur-containing derivative MAX114 is as close as 

possible to the same value of the previously-described WS-2 dye (15.5 × 103 M-1·cm-1 and 16.7 

× 103 M-1·cm-1, correspondingly) [16] ), the second absorption band suffers strong 

hypsochromic shift from λmax = 533 nm for WS-2 to 482 nm for MAX114. Thus, a small 

change in the donor fragment (addition of one CH2 group in the indoline ring) has a significant 

effect on the second absorption maximum, which indicates a high sensitivity of intramolecular 

electron transfer to even small variations in the structure of the donor part of the molecules. 

We found that the nature of the chalcogen in the internal acceptor affects the long-wave 

absorption maximum. MAX dyes show a significant bathochromic shift during the replacement 
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of the sulfur atom in the 1,2,5-chalcogenadiazole ring on the more electronegative oxygen atom 

(24 nm), and the more electropositive atom of selenium (30 nm). At the same time, the short-

wave absorption maximum (about 370 nm) is practically independent of the chalcogen atom in 

the heterocycle: the deviation is no more than 10 nm. Probably, such a nonlinear dependence 

can be explained, on the one hand, by a decrease in the electronegativity of sulfur in comparison 

with oxygen, which reduces the efficiency of intramolecular charge transfer by reducing the 

electron acceptor effect of the chalcogenadiazole fragment. On the other hand, an increase in 

the radius of the atom in the transition from sulfur to selenium seems to contribute to the ICT 

process due to the presence of d-orbitals in the selenium atom that can participate in the 

conjugation. The extinction coefficient was also dependent on the nature of the chalcogen: the 

smallest extinction was observed for the oxygen-containing compound MAX123 (6.8 × 103 M-

1·cm-1). However, in this case, the dye based on thiadiazole showed values that do not 

correspond to the linear change in the sequential change of chalcogen atoms: the extinction 

coefficient for the sulfur-containing dye (MAX114) was 15.5 × 103 M-1·cm-1, while the 

selenium analogue (MAX115) showed a value of 13.0 × 103 M-1·cm-1. Thus, the maximum 

conjugation has dyes based on sulfur and selenium, and the introduction of an electronegative 

oxygen atom with a minimum radius probably alters the geometry of the molecule, reducing 

the conjugation. The calculated Eg opt for known dye WS-2 is much less compared to the dyes 

of the MAX series. It is surprising that the oxygen and selenium dyes (MAX115 and MAX123) 

showed better results, compared with the sulfur-containing compound MAX114, which is the 

closest analog of WS-2 (Table 1). 
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Fig. 1 UV-Visible absorption (a) in DCM/MeOH (V/V = 98/2) at 4×10-5 mol L-1 of MAX dyes.  

 

Table 1. UV-Visible absorption properties of the MAX series in DCM/MeOH (V/V = 98/2) 

solutions. 

 

Dye λmax1, 

[nm][a] 

εmax1 × 103, 

[M-1·cm-1][a] 

λmax2, 

[nm][a] 

εmax2 × 103, 

[M-1·cm-1][a] 

λonset, 

[nm][a] Eg, opt, eV[b] 

MAX114 365 12.5 482 15.5 595 2.087 

MAX115 375 13.8 512 13.0 629 1.975 

MAX123 367 4.4 506 6.8 633 1.962 

WS-2 [c]   533 16.7 675 1.840 

[a] Absorption peaks (λmax, λonset) and molar extinction coefficients (ε) in DCM/MeOH (V/V = 

98/2) [b] Calculated by 1242/λonset 
[с] [16] 

 

To estimate the energy value of the frontier orbitals, the potential values of the first 

oxidation and reduction peaks on the cyclic voltammetry curves of the investigated compounds 

in DMF were obtained. Figure 2 shows a cyclic voltammogram of the new sensitizers obtained 
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versus ferrocene/ferrocenium (Fc/Fc+) at a scan rate of 100 mVs−1. Electroreduction peaks, as 

seen in Fig.1, are reversible at low potential sweep rates. Electrooxidation of all compounds is 

irreversible even at a sweep rate of 10 Vs-1. Relevant electrochemical data for the compounds 

are presented in Table 2. Assuming a value of -5.1 eV [45,46] for the absolute potential of the 

Fc/Fc+ couple in non-aqueous electrolytes, EHOMO and ELUMO were calculated using equations 

(1) and (2): 

 

EHOMO (eV) = - |e|(E ox
 Fc/Fc+  + 5.1)                (1) 

ELUMO (eV) = - |e|(E red Fc/Fc+ + 5.1)                (2) 

 

As a result, ELUMO of MAX114 (-3.48 eV), MAX115 (-3.57 eV) and MAX123 (-3.63 eV) 

are higher in energy than the conduction band edge of nanocrystalline TiO2 (-4.2 eV) [47], 

indicating that the electron injection process from the excited dye molecules to the TiO2 

conduction band is energetically permitted. However, in the series of three dyes, there is no 

linear dependence of these values in the transition from an oxygen-containing analogue 

MAX115 to a selenium-containing one MAX123. The minimum value of ELUMO, is seen for 

the dye based on thiadiazole MAX114. Since the energy of the LUMO depends on the degree 

of conjugation of the molecule [48,49], it can be assumed that an increase in the 

electronegativity of the central chalcogen atom by transition from thiadiazole to oxadiazole 

leads to too strong charge separation, while the transition to a more voluminous selenium atom 

leads to a reduction in conjugation due to an increase in the radius of the central atom and 

changes in the geometry of the molecule.  

The EHOMO level of MAX114 (-5.39 eV), MAX115 (-5.34 eV) and MAX123 (-5.44 

eV) show more negative values than the energy level of I-/I3
- redox (-5.2 eV) [50], therefore, 

dye regeneration should be thermodynamically favorable. Since the HOMO energy is 

dependent mostly on the nature of the donor fragment of the molecules, it is not surprising that 

the values of EHOMO for all three dyes differ by no more than 0.1 eV. 

Comparison of the ELUMO level of MAX114 with the corresponding values of the 

known analogue WS-2 (Table 2, [52]), differing in the size of the alicycle in the donor part of 

the molecule, leads to the conclusion that the replacement of the cyclopentane fragment in the 

donor in WS-2 to cyclohexane in MAX114, apparently leads to a decrease in the degree of 

conjugation of the molecule. The decrease in the EHOMO level of MAX114 compared to WS-2 

by 0.38 eV indicates an increase in the degree of delocalization of the donor fragment 

containing the cyclohexane ring. 
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The electrochemical gap energy Eg
CV for each dye is calculated from the difference 

between their EHOMO and ELUMO. All Eg values (Table 2) satisfy the design expectation that this 

value for dye-sensitized solar cells should be less than 2.5 eV [51]. As a result, all dyes have 

enough energetic driving force for efficient DSSCs using a nanocrystalline titania photocatalyst 

and the I−/I3
− redox couple. 

 

 

   (a)      (b) 

(c) 

Fig. 2. Cyclic voltammogram showing reduction (a) and oxidation (b) of MAX 114 (1), 

MAX 115 (2), MAX 123 (3). Scan rate 100 mVs−1, electrolyte 0.1 M Bu4NClO4 in DMF. 

(c) Schematic diagram of energy levels of TiO2 conduction band, dyes and I−/I3
− redox 

couple. 

 

Table 2. Electrochemical properties of the dyes in DMF solutions. 

 

Compound Ered (vs Fc/Fc+)[a], 

V 

ЕLUMO
[b]

, 

eV 

Eox (vs 

Fc/Fc+)[a],V  

ЕHOMO
[b]

, 

eV 

Еg
[c], eV 

MAX 114 -1.62 -3.48 0.29 -5.39 1.91 

MAX 115 -1.53 -3.57 0.24 -5.34 1.77 

MAX 123 -1.47 -3.63 0.34 -5.44 1.80 
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WS-2 -1.33[d] -3.77 0.67[d] -5.77 2.00[52] 

a Here Eox
onset and Ered

onset are oxidation and reduction peak potential relative to Fc/Fc+  

respectively  
b Energies of frontier orbitals were calculated according to equations (1) and (2) 
c Еg= ЕLUMO -ЕHOMO  

Unsurprisingly the Eg data of the MAX dyes obtained from the CV data agree well with 

the absorption onset. Thiadiazole dye (МАХ114) has a bit higher Eg than its selenium and 

oxygen counterparts. This enhancement can lead apparently to a longer lifetime of the first 

excited state of MAX114, which should have a positive impact on the photovoltaic efficiency 

of solar cells made on its basis. These data once again prove the better photovoltaic properties 

of fused thiadiazoles compared to oxa - and selenadiazole analogs, which leads to nonlinear 

changes in the properties of a number of chalcogen atoms. The Eg value for the known dye 

WS-2 is close to its structural analogue MAX114, which should lead to close parameters of 

solar cells based on these compounds. 

3.3 DSC performance 

To study the influence of the chalcogen atom in chalcogenadiazole ring of the central acceptor 

unit of the dye on the photovoltaic efficiency, we constructed DSSCs based on the dye series 

MAX. Commercially available ruthenium dye N719 was chosen as a reference dye. The J-V 

curves are shown on  Fig. 3 and the results are summarized in Table 3. Fill factors (FF) have 

similar values for all dyes in the MAX series, from 0.61 to 0.64, therefore PCE values will 

depend mainly on open-circuit voltage (Voc) and short-circuit current density (Jsc). Voc values 

for all three dyes of the MAX series are approximately equal to each other. There are two main 

factors that result in the variation of Voc. The first is the quasi-Fermi level shift and the second 

is recombination of injected electrons with oxidized sensitizer or electrolyte. The three dyes 

possess similar structures such that suppression of electronic recombination is likely to be 

similar in each case. To confirm this, the electron lifetime of the conduction band electrons in 

the TiO2 (= electron lifetime) was analyzed by electrochemical impedance spectroscopy. Fig. 

S4 shows the electron lifetime plot against VOC with the MAX DSSCs. The values were derived 

from the peak frequency in the Bode plots. In comparison with the reference N719, the electron 

lifetime trends are similar among the series, ranging around 2-5 ms at 0.8-1.0 sun.  The results 

are coherent with the similar VOC values achieved by the three dyes. Accordingly, the primary 

factor for the voltage is more likely to be the quasi-Fermi level shift due to the different amount 

of injected electrons from the excited dyes into the conduction band of TiO2 with various 

LUMO levels. 
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The Jsc of the benzothiadiazole dye MAX114 issignificantly higher than the oxygen 

analogue MAX123. The selenadiazole MAX115 sits between MAX114 and MAX123. This is 

consistent with the fact that the dye MAX114 has the highest extinction coefficient but is 

contrary to the values of long-wavelength absorption maxima. Since all three dyes have similar 

HOMO values (the difference does not exceed 0.1 eV), it is likely that the oxidized state, 

formed after electron injection, in all three dyes is easily regenerated to the neutral state. The 

interesting fact is that the values of LUMO energy level of synthesized dyes change nonlinearly 

when moving from oxygen-containing MAX123 through sulfur- (MAX114) to selenium-

analogues (MAX115). Thiadiazole derivative MAX114 has the higher LUMO level whilst the 

values of LUMO energy level of MAX115 and MAX123 are, respectively, 0.09 and 0.15 eV 

lower. The energy gap values of MAX115 and MAX123 dyes obtained by cyclic voltammetry 

are 0.14 and 0.11 eV, respectively, less than the Eg of the MAX114 dye. The energy gap values 

obtained from the optical data are consistent with the Eg
CV values: the difference between the 

values exceeded 0.1 eV. The combination of these factors leads to relatively low values of the 

photovoltaic efficiency of oxygen-containing dye in comparison with the sulfur and shows that 

the performance of sulfur-based dyes should be superior than oxygen and selenium-based dyes. 

The dark current in DSSCs based on N719 dyeis less than that for the MAX series dyes, 

which means less effective suppression of charge recombination from TiO2 to the electrolyte 

for the latter. 

It is interesting to note that the current-voltage characteristics for DSSCs based on the 

dye WS-2, performed under similar conditions [52], are lower than the similar dye MAX114, 

differing by one CH2 group in the donor alicyclic fragment. The most important difference for 

WS-2 and MAX114 was found for Jsc and consequently for PCE; 5.07 and 5.86%, respectively. 

The incident photon-to-current efficiency curves (Fig. S25) also support the superior JSC of 

MAX114 to WS-2. Unlike the UV-Visible absorption in solution (Fig. 1), the optical 

absorption of MAX114 is efficient throughout the visible spectrum. The poorer results for 

MAX115 and MAX123 are consistent with our predictions above. 

 

 

 

 

 

Table 3. J-V characteristics for DSSCs based on the dyes MAX series and N719[a]. 
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Dye Voc (mV)   Jsc (mA cm-2) FF η (%) 

MAX114 0.64 14.75 0.62 5.86 

MAX115 0.65 13.75 0.64 5.78 

MAX123 0.64 11.90 0.61 4.66 

N719 0.78 15.32 0.63 7.54 

WS-2 0.59 11.8 0.63 5.07 

[a] The data given for MAX dyes and N719 were obtained with 8 µm (4 µm transparent + 4 µm 

scattering) TiO2 films and CDCA additive. The data for WS2 was taken from the paper [52] 

and were obtained with 12 µm (8 µm transparent + 4 µm scattering) TiO2 films and no CDCA 

additive. 

 

Fig. 3. J-V characteristic for DSSCs based on the dyes MAX series and N719 

 

4 Conclusions 

In summary, we have synthesized 4,6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-(p-

tolyl)-1,2,3,4,4a,9a-hexahydrocarbazole - a new donor building-block for DSSCs. Three novel 

D-A-π-A metal-free organic sensitizers were obtained using this donor. 2,1,3-Benzothiadiazole 

sensitizer MAX114 based on 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole showed 

higher PCE by comparison to the well-known 4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indolyl building block, which is varied from extensively investigated 

4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole by one excessive CH2 group in 

indoline cycle (see, for example, dye WS-2 and other similar dyes). Interestingly these higher 

PCE values for MAX114 were achieved despite significant hypsochromic shift in the UV-vis 

spectrum and a slightly higher Eg than the WS-2 dye. This can be explained by the changes of 

the ELUMO and EHOMO levels, which depend on the donor strength of the condensed alicyclic 
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fragment, affecting the degree of conjugation of the molecules and also on molecular geometry, 

changing in the transition from cyclopentene to cyclohexene derivative, which affects the 

delocalization of the charge. Surprisingly, replacement of the chalcogen atom in the central 

acceptor 2,1,3-benzochalcogenadiazole block from the sulfur atom to a more electronegative 

oxygen atom or a more voluminous selenium atom leads to nonlinear dependence with 

bathochromic shift (24-30 nm) in the UV-vis spectra, and bigger energy gap Eg of about 0.1 

eV. Nevertheless, the exchange of oxygen- and selenium atoms in benzochalcogenadiazole to 

sulfur atom leads to a sharp increase in photovoltaic parameters, including PCE. In summary, 

the 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole donor building block opens new 

possibilities to improve the photovoltaic efficiency of organic sensitizers in DSSCs and 

demonstrates the importance of tuning also the non-conjugated aliphatic part of the donor 

group. 
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