95 research outputs found

    Change of the emission spectra in organic light-emitting diodes by layer thickness modification

    Get PDF
    The electroluminescence (EL) and photoluminescence properties of organic light-emitting diodes (LED) were analyzed using layer thickness modification. Investigations show that the EL spectra exhibited significant variation with the increase of the viewing angle. It was found that multiple peak emission could be achieved for a certain range of thickness values. It was concluded that near white emission with CIE coordinates (0.32, 0.43) could be obtained for optimized device thickness.published_or_final_versio

    Laser feedback interferometry in multi-mode terahertz quantum cascade lasers

    Get PDF
    The typical modal characteristics arising during laser feedback interferometry (LFI) in multi-mode terahertz (THz) quantum cascade lasers (QCLs) are investigated in this work. To this end, a set of multi-mode reduced rate equations with gain saturation for a general Fabry-Pérot multi-mode THz QCL under optical feedback is developed. Depending on gain bandwidth of the laser and optical feedback level, three different operating regimes are identified, namely a single-mode regime, a multi-mode regime, and a tuneable-mode regime. When the laser operates in the single-mode and multi-mode regimes, the self-mixing signal amplitude (peak to peak value of the self-mixing fringes) is proportional to the feedback coupling rate at each mode frequency. However, this rule no longer holds when the laser enters into the tuneable-mode regime, in which the feedback level becomes sufficiently strong (the boundary value of the feedback level depends on the gain bandwidth). The mapping of the identified feedback regimes of the multi-mode THz QCL in the space of the gain bandwidth and feedback level is investigated. In addition, the dependence of the aforementioned mapping of these three regimes on the linewidth enhancement factor of the laser is also explored, which provides a systematic picture of the potential of LFI in multi-mode THz QCLs for spectroscopic sensing applications

    Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry

    Get PDF
    The effects of optical feedback (OF) in lasers have been observed since the early days of laser development. While OF can result in undesirable and unpredictable operation in laser systems, it can also cause measurable perturbations to the operating parameters, which can be harnessed for metrological purposes. In this work we exploit this ‘self-mixing’ effect to infer the emission spectrum of a semiconductor laser using a laser-feedback interferometer, in which the terminal voltage of the laser is used to coherently sample the reinjected field. We demonstrate this approach using a terahertz frequency quantum cascade laser operating in both single- and multiple-longitudinal mode regimes, and are able to resolve spectral features not reliably resolved using traditional Fourier transform spectroscopy. We also investigate quantitatively the frequency perturbation of individual laser modes under OF, and find excellent agreement with predictions of the excess phase equation central to the theory of lasers under OF

    Refractive-index sensing with ultra-thin plasmonic nanotubes

    Full text link
    We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultra-thin metal shell. The few-nm thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure-of-merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits superior sensitivity and comparable figure-of-merit

    Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles

    Full text link
    Origin of shifts in the surface plasmon resonance (SPR) frequency for noble metal (Au, Ag) nanoclusters are discussed in this book chapter. Spill out of electron from the Fermi surface is considered as the origin of red shift. On the other hand, both screening of electrons of the noble metal in porous media and quantum effect of screen surface electron are considered for the observed blue shift in the SPR peak position.Comment: 37 pages, 14 Figures in the submitted book chapter of The Annual Reviews in Plasmonics, edited by Professor Chris D. Geddes. Springer Scinec

    Ultrafast Buildup Dynamics of Terahertz Pulse Generation in Mode-Locked Quantum Cascade Lasers

    Get PDF
    Ultrashort terahertz pulse generation is essential for a range of proven terahertz applications, from time-resolved spectroscopy of fundamental excitations to nondestructive testing and imaging. Recently, it has been shown that semiconductor-based terahertz quantum cascade lasers (QCLs) can be used to generate pulses as short as a few picoseconds through active mode locking. However, further progress for subpicosecond and high peak power pulse generation is hampered by poor knowledge on how the electric field actually forms in these lasers. Here, we theoretically and experimentally show the amplitude- and phase-resolved buildup of pulse generation through active mode locking, from initiation of pulse generation to the nanosecond steady state. The experimental results, using an ultrafast coherent seeding technique to probe the laser from femtosecond to nanosecond time scales, are in full agreement with the theoretical calculations based on a theoretical model using multimode reduced rate equations. In particular, we show that the electric field buildup to achieve short pulse operation is extremely fast, requiring only a few photon round trips, owing to the ultrafast gain dynamics of the lasers. Further, this shows a gain recovery time of the order of a few picoseconds, an order of magnitude smaller than the photon round-trip time, highlighting that terahertz QCLs are categorically class-A lasers. This demonstration marks an important formulism for future progress towards exploring the ultrafast pulse generation buildup dynamics of these complex semiconductor lasers

    Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

    Get PDF
    UPNa. Departamento de Ingeniería Eléctrica y Electrónica. Laboratorio de fotónica TERALABWe present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17â€...THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling ofinfrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications.Effort sponsored by Spanish Government under contracts Consolider EngineeringMetamaterials CSD2008-00066, TEC2011-28664-C01 and TEC2011-28664-C02. V.T. acknowledges funding from Universidad Pública de Navarra. P.R.-U. is sponsored by the Government of Navarra under funding program Formación de tecnólogos 055/01/11. M.N.-C. is supported by the Imperial College Junior Research Fellowship. M.B. acknowledges funding by the Spanish Government under the research contract program Ramón y Cajal RYC-2011-08221

    Publisher Correction: Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper

    Determining Ethanol Content of Liquid Solutions Using Laser Feedback Interferometry with a Terahertz Quantum Cascade Laser

    Get PDF
    Over the last decade, terahertz (THz) time-domain spectroscopy has been investigated as a technique for assaying the ethanol content of liquid solutions-indeed, operating at THz frequencies addresses some of the challenges that traditional optical refraction measurements face, such as delineation between sugar-ethanol content, florescence, and problems arising from carbonation or other dissolved gasses. In this article, we propose an alternative system and method for assaying ethanol content of liquid solutions at THz frequencies, which employs a laser feedback interferometer built around a 2.6-THz quantum cascade laser. The system is tested against a series of controlled water-ethanol solutions, as well as a series of commercially available beverages. The accuracy of the estimated ethanol content compares favorably to THz time-domain spectroscopy techniques
    • …
    corecore