13 research outputs found

    GT-1a or GT-1b Subtype-Specific Resistance Profiles for Hepatitis C Virus Inhibitors Telaprevir and HCV-796â–¿

    No full text
    In vitro, telaprevir selects subtype-specific resistance pathways for hepatitis C virus GT-1a and GT-1b, as described to have occurred in patients. In GT-1a, the HCV-796 resistance mutation C316Y has low replication capacity (7%) that can be compensated for by the emergence of the mutation L392F or M414T, resulting in an increase in replication levels of ≥10-fold

    Pseudomonas aeruginosa-specific IgG1 and IgG2 subclasses in enhancement of pulmonary clearance following passive immunisation in the rat

    No full text
    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen, which causes serious debilitating infections in patients with compromised lung function. The mechanism by which P. aeruginosa is cleared from the lung is not fully defined, although our previous studies have established a role for cellular immunity in protection against P. aeruginosa infections. This study aimed to evaluate the role of P. aeruginosa-specific IgG in protection against P. aeruginosa in a rat model of acute pulmonary infection. Immunoaffinity chromatography was used to purify total rat IgG from rat immune serum (rats immunised with P. aeruginosa) and non-immune serum. Untreated recipient rats were injected intravenously with different concentrations of pure IgG prepared from serum of unimmunised rats (non-immune IgG) or from rats immunised intestinally with killed P. aeruginosa (immune IgG) and infected intratracheally with P. aeruginosa 18 h later. The protective capability of the purified IgG against P. aeruginosa was assessed by measurement of reduction in P. aeruginosa infection in the lung 4 h after instillation of bacteria. Enhanced bacterial clearance induced by IgG was determined to be dose-dependent with a 1 mg dose failing to enhance clearance, whereas 5 mg of immune IgG enhanced clearance from the airways and the lung tissue. Measurement of the IgG1, IgG2a and IgG2b isotypes in serum and the lung lavage following transfer of P. aeruginosa-specific IgG found that all three were present. These results demonstrate that anti-P. aeruginosa IgG can enhance bacterial clearance from the airways in an acute infection and identify an important role for IgG in acute respiratory infections caused by P. aeruginosa

    Selection and Characterization of Replicon Variants Dually Resistant to Thumb- and Palm-Binding Nonnucleoside Polymerase Inhibitors of the Hepatitis C Virus

    No full text
    Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants

    Discovery of a Novel Series of Potent Non-Nucleoside Inhibitors of Hepatitis C Virus NS5B

    No full text
    Hepatitis C virus (HCV) is a major global public health problem. While the current standard of care, a direct-acting antiviral (DAA) protease inhibitor taken in combination with pegylated interferon and ribavirin, represents a major advancement in recent years, an unmet medical need still exists for treatment modalities that improve upon both efficacy and tolerability. Toward those ends, much effort has continued to focus on the discovery of new DAAs, with the ultimate goal to provide interferon-free combinations. The RNA-dependent RNA polymerase enzyme NS5B represents one such DAA therapeutic target for inhibition that has attracted much interest over the past decade. Herein, we report the discovery and optimization of a novel series of inhibitors of HCV NS5B, through the use of structure-based design applied to a fragment-derived starting point. Issues of potency, pharmacokinetics, and early safety were addressed in order to provide a clinical candidate in fluoropyridone <b>19</b>
    corecore