21 research outputs found

    Factors controlling the net ecosystem production of cryoconite on Western Himalayan glaciers

    Get PDF
    Ikke OAIn situ experiments were conducted to determine the net ecosystem production (NEP) in cryoconite holes from the surface of two glaciers (Patsio glacier and Chhota Shigri glacier) in the Western Himalaya during the melt season from August to September 2019. The study aimed to gain an insight into the factors controlling microbial activity on glacier surfaces in this region. A wide range of parameters, including sediment thickness, TOC %, TN %, chlorophyll-a concentration, altitudinal position, and grain size of the cryoconite mineral particles were considered as potential controlling factors. From redundancy analysis, the rate of Respiration observed in cryoconite at Chhota Shigri glacier was predominantly explained by sediment thickness in cryoconite holes (37.1% of the total variance, p < 0.05) with Photosynthesis largely explained by the chlorophyll-a content of the sediment (39.6%, p < 0.05). NEP was explained primarily by the TOC content and sediment thickness in cryoconite holes (35.8% and 22.1% respectively, p < 0.05). The altitudinal position of the cryoconite is strongly correlated with biological activity, suggesting that the stability of cryoconite holes was an important factor driving primary productivity and respiration rate on the surface of Chhota Shigri glacier. We calculated that the number of melt seasons required to accumulate organic carbon in thin sediment layers (< 0.3 cm), based on our measured NEP rates, ranged from 11 to 70 years, indicating that the organic carbon in cryoconite holes largely derives from allochthonous inputs, such as elsewhere on the glacier surface. Phototrophic biomass in the same thin sediment layer of cryoconite was estimated to take atleast 4 months to be produced in situ (with mean estimated time upto 1.7 ± 1.5 years). Organic matter accumulated inside the cryoconite holes both through allochthonous deposition and via biological activity on the glacier surface in these areas may have the potential to export dissolved organic matter and associated nutrients to downstream ecosystems. Given the importance of Himalayan glaciers as a vital water source for millions of people downstream, this study highlights the need for further investigation in aspects of the quantification of in situ produced organic matter and its impact on supraglacial melting in the Himalay

    Advancements in hydrochemistry mapping: application to groundwater arsenic and iron concentrations in Varanasi, Uttar Pradesh, India

    No full text
    The area east of Varanasi is one of numerous places along the watershed of the Ganges River with groundwater concentrations of arsenic surpassing the maximum value of 10 parts per billion (ppb) recommended by the World Health Organization in drinking water. Here we apply geostatistics and compositional data analysis for the mapping of arsenic and iron to help in understanding the conditions leading to the occurrence of elevated level of arsenic in groundwater. The methodology allows for displaying concentrations of arsenic and iron as maps consistent with the limited information from 95 water wells across an area of approximately 210 km2; visualization of the uncertainty associated with the sampling; and summary of the findings in the form of probability maps. For thousands of years, Varanasi has been on the erosional side in a meander of the river that is free of arsenic values above 10 ppb. Maps reveal two anomalies of high arsenic concentrations on the depositional side of the valley, which has started seeing urban development. The methodology using geostatistics combined with compositional data analysis is completely general, so this study could be used as a prototype for hydrochemistry mapping in other area

    Improvement of seed quality and field emergence of Fusarium moniliforme infected sorghum seeds using biological agents

    No full text
    Five different cultivars of sorghum seeds infected with a varied degree of Fusarium moniliforme were treated with biocontrol agents. Pure cultures of Pseudomonas fluorescens, Trichoderma harzianum and Chaetomium globosum at the rate of 1 x 10(8) cfu g(-1) and talcum based formulations of (28 x 10(7) cfu g(-1)), (19 x 10(7) cfu g(-1)) and (4 x 10(6) cfu g(-1)) at the rate of 6 g kg(-1) and 10 g kg(-1) of seeds were used, respectively. The treated seeds were evaluated for per cent reduction of F moniliforme, seed germination, vigour index and field emergence. It was found that the pure culture of P fluorescens was more effective in reducing the F moniliforme infection followed by T harzianum and C globosum than the Bavistin treated and untreated seeds. Formulations of P fluorescens were effective in reducing the F moniliforme infection and also in increasing the seed germination, vigour index and field emergence, followed by T harzianum and C globosum treatments in comparison with control. (C) 1999 Society of Chemical Industry

    Provincial and seasonal influences on heavy metals in the Noyyal River of South India and their human health hazards

    No full text
    This study was carried out to evaluate the heavy metals (Lead (Pb), Nickel (Ni), Chromium (Cr), Copper (Cu), Cadmium (Cd) and Zinc (Zn)) pollution in the Noyyal River of South India by collecting 130 river water samples (65 each in pre- and post-monsoon). The heavy metals were measured using Atomic Absorption Spectrophotometer (AAS). The data were used to calculate the associated health hazards for the inhabitants consume river water. Correlation analyses and average concentration of heavy metals denoted that post-monsoon metal concentrations were lesser compared to the pre-monsoon due to dilution effect. Modified Contamination Degree (MCD) indicated that 45% of pre-monsoon and 25% of post-monsoon samples were classified under extremely polluted category. Heavy metal pollution index (HPI) showed that all the regions fall under highly polluted category except 'Region I' where 20% of samples were under safe category during the pre-monsoon, whereas 9%,28%, 17% and 26% of samples in Regions I, II, III and IV were highly polluted during the post-monsoon season, respectively. Ecological Risk Index (ERI) revealed that high risks attained in Regions II (78%) and III (82%) during pre-monsoon, and reduced risks found in Regions II (28%) and III (45%) during post-monsoon season due to dilution by monsoon rainfall. Non-carcinogenic risks as inferred by the Hazard Index (HI) indicated that 78% and 52% of samples for infants, 75% and 49% of samples for teens and 71% and 45% of samples for adults exceeded the threshold limits of USEPA (HI > 1) and possessed risks during pre- and post-monsoon, respectively. The cancer risk assessment based on ingestion of heavy metals indicated that the order of risk is Ni > Cr > Cu. The HI for infants and teens was notably high to that of adults in both the seasons. This study will be useful to develop effective strategies for improving river water quality and to reduce human health hazards
    corecore