7 research outputs found

    Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude

    Get PDF
    The present work has explored for the first time acclimation of upper versus lower canopy leaves along an altitudinal gradient. We tested the hypothesis that restrictive climatic conditions associated with high altitudes reduce within-canopy variations of leaf traits. The investigated beech (Fagus sylvatica L.) forest is located on the southern slope of the Hrubý Jeseník Mountains (Czech Republic). All measurements were taken on leaves from upper and lower parts of the canopy of mature trees (>85 years old) growing at low (400 m above sea level, a.s.l.), middle (720 m a.s.l.) and high (1100 m a.s.l.) altitudes. Compared with trees at higher altitudes, those growing at low altitudes had lower stomatal conductance, slightly lower CO2 assimilation rate (Amax) and leaf mass per area (LMA), and higher photochemical reflectance index, water-use efficiency and Rubisco content. Given similar stand densities at all altitudes, the different growth conditions result in a more open canopy and higher penetration of light into lower canopy with increasing altitude. Even though strong vertical gradients in light intensity occurred across the canopy at all altitudes, lower canopy leaves at high altitudes tended to acquire the same morphological, biochemical and physiological traits as did upper leaves. While elevation had no significant effect on nitrogen (N) and carbon (C) contents per unit leaf area, LMA, or total content of chlorophylls and epidermal flavonoids in upper leaves, these increased significantly in lower leaves at higher altitudes. The increases in N content of lower leaves were coupled with similar changes in Amax. Moreover, a high N content coincided with high Rubisco concentrations in lower but not in upper canopy leaves. Our results show that the limiting role of light in lower parts of the canopy is reduced at high altitudes. A great capacity of trees to adjust the entire canopy is thus demonstrated

    Convergence of morphological, biochemical, and physiological traits of upper and lower canopy of European beech leaves and Norway spruce needles within altitudinal gradients

    No full text
    Climatic variation along altitudinal gradients provides an excellent natural experimental set-up for investigating the possible impacts of climate change on terrestrial organisms and ecosystems. The present work has explored for the first time the acclimation of upper versus lower canopy leaves or needles in European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests along an altitudinal gradient. We tested the hypothesis that restrictive climatic conditions associated with high altitudes reduce within-canopy variations of leaf traits. The investigated beech and spruce forests were located on the southern slope of the Hrubý Jeseník Mountains (Czech Republic). All measurements were taken on leaves from the upper and lower parts of the canopy of mature trees (>60 years old) growing at low (400 m a.s.l.), middle (720 m a.s.l.), and high (1,100 m a.s.l.) altitudes. Generally, we observed that with increasing altitude, which is associated with adverse microclimatic conditions, a convergence of CO2 assimilation rate and other physiological, morphological, and biochemical characteristics between the upper and lower canopy occurred. However, differences in altitudinal response among individual traits and species were found. Such plasticity in acclimation of leaves and needles has the potential to cause substantial change in the photosynthesis of individual parts of forest canopies within the vertical profile and their contribution to the overall carbon balance of vegetation

    Changes in Vertical Distribution of Spectral Reflectance within Spring Barley Canopy as an Indicator of Nitrogen Nutrition, Canopy Structure and Yield Parameters

    No full text
    The main objective of this study was to evaluate the spectral reflectance in the vertical profile of spring barley canopy at the booting growth stage and to determine how the reflectance gradient changes in relation to crop density and nitrogen (N) nutrition. Vertical gradients of spectral reflectance were studied in field trials with three sowing densities (2, 4 and 6 million of germinating seeds/ha) and two levels of N nutrition (0 and 90 kg/ha). It was found that differences in vegetation indices caused by N nutrition are most pronounced in the second and third leaf from the top, and these increase with increasing sowing density

    Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude

    No full text
    The present work has explored for the first time acclimation of upper versus lower canopy leaves along an altitudinal gradient. We tested the hypothesis that restrictive climatic conditions associated with high altitudes reduce within-canopy variations of leaf traits. The investigated beech (Fagus sylvatica L.) forest is located on the southern slope of the Hrubý Jeseník Mountains (Czech Republic). All measurements were taken on leaves from upper and lower parts of the canopy of mature trees (>85 years old) growing at low (400 m above sea level, a.s.l.), middle (720 m a.s.l.) and high (1100 m a.s.l.) altitudes. Compared with trees at higher altitudes, those growing at low altitudes had lower stomatal conductance, slightly lower CO2 assimilation rate (Amax) and leaf mass per area (LMA), and higher photochemical reflectance index, water-use efficiency and Rubisco content. Given similar stand densities at all altitudes, the different growth conditions result in a more open canopy and higher penetration of light into lower canopy with increasing altitude. Even though strong vertical gradients in light intensity occurred across the canopy at all altitudes, lower canopy leaves at high altitudes tended to acquire the same morphological, biochemical and physiological traits as did upper leaves. While elevation had no significant effect on nitrogen (N) and carbon (C) contents per unit leaf area, LMA, or total content of chlorophylls and epidermal flavonoids in upper leaves, these increased significantly in lower leaves at higher altitudes. The increases in N content of lower leaves were coupled with similar changes in Amax. Moreover, a high N content coincided with high Rubisco concentrations in lower but not in upper canopy leaves. Our results show that the limiting role of light in lower parts of the canopy is reduced at high altitudes. A great capacity of trees to adjust the entire canopy is thus demonstrated
    corecore