25 research outputs found

    Subcellular protein expression models for microsatellite instability in colorectal adenocarcinoma tissue images

    Get PDF
    Background New bioimaging techniques capable of visualising the co-location of numerous proteins within individual cells have been proposed to study tumour heterogeneity of neighbouring cells within the same tissue specimen. These techniques have highlighted the need to better understand the interplay between proteins in terms of their colocalisation. Results We recently proposed a cellular-level model of the healthy and cancerous colonic crypt microenvironments. Here, we extend the model to include detailed models of protein expression to generate synthetic multiplex fluorescence data. As a first step, we present models for various cell organelles learned from real immunofluorescence data from the Human Protein Atlas. Comparison between the distribution of various features obtained from the real and synthetic organelles has shown very good agreement. This has included both features that have been used as part of the model input and ones that have not been explicitly considered. We then develop models for six proteins which are important colorectal cancer biomarkers and are associated with microsatellite instability, namely MLH1, PMS2, MSH2, MSH6, P53 and PTEN. The protein models include their complex expression patterns and which cell phenotypes express them. The models have been validated by comparing distributions of real and synthesised parameters and by application of frameworks for analysing multiplex immunofluorescence image data. Conclusions The six proteins have been chosen as a case study to illustrate how the model can be used to generate synthetic multiplex immunofluorescence data. Further proteins could be included within the model in a similar manner to enable the study of a larger set of proteins of interest and their interactions. To the best of our knowledge, this is the first model for expression of multiple proteins in anatomically intact tissue, rather than within cells in culture.QNRF grant NPRP 5-1345-1-228. BBSRC and University of Warwick Institute of Advanced Study

    A model of the spatial tumour heterogeneity in colorectal adenocarcinoma tissue

    Get PDF
    Background There have been great advancements in the field of digital pathology. The surge in development of analytical methods for such data makes it crucial to develop benchmark synthetic datasets for objectively validating and comparing these methods. In addition, developing a spatial model of the tumour microenvironment can aid our understanding of the underpinning laws of tumour heterogeneity. Results We propose a model of the healthy and cancerous colonic crypt microenvironment. Our model is designed to generate synthetic histology image data with parameters that allow control over cancer grade, cellularity, cell overlap ratio, image resolution, and objective level. Conclusions To the best of our knowledge, ours is the first model to simulate histology image data at sub-cellular level for healthy and cancerous colon tissue, where the cells have different compartments and are organised to mimic the microenvironment of tissue in situ rather than dispersed cells in a cultured environment. Qualitative and quantitative validation has been performed on the model results demonstrating good similarity to the real data. The simulated data could be used to validate techniques such as image restoration, cell and crypt segmentation, and cancer grading.BBSRC and University of Warwick Institute of Advanced Study. QNRF grant NPRP 5-1345-1-228

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Cell Maps Representation For Lung Adenocarcinoma Growth Patterns Classification In Whole Slide Images

    Full text link
    Lung adenocarcinoma is a morphologically heterogeneous disease, characterized by five primary histologic growth patterns. The quantity of these patterns can be related to tumor behavior and has a significant impact on patient prognosis. In this work, we propose a novel machine learning pipeline capable of classifying tissue tiles into one of the five patterns or as non-tumor, with an Area Under the Receiver Operating Characteristic Curve (AUCROC) score of 0.97. Our model's strength lies in its comprehensive consideration of cellular spatial patterns, where it first generates cell maps from Hematoxylin and Eosin (H&E) whole slide images (WSIs), which are then fed into a convolutional neural network classification model. Exploiting these cell maps provides the model with robust generalizability to new data, achieving approximately 30% higher accuracy on unseen test-sets compared to current state of the art approaches. The insights derived from our model can be used to predict prognosis, enhancing patient outcomes

    Classification of lung cancer histology images using patch-level summary statistics

    Get PDF
    There are two main types of lung cancer: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), which are grouped accordingly due to similarity in behaviour and response to treatment. The main types of NSCLC are lung adenocarcinoma (LUAD), which accounts for about 40% of all lung cancers and lung squamous cell carcinoma (LUSC), which accounts for about 25-30% of all lung cancers. Due to their differences, automated classification of these two main subtypes of NSCLC is a critical step in developing a computer aided diagnostic system. We present an automated method for NSCLC classification, that consists of a two-part approach. Firstly, we implement a deep learning framework to classify input patches as LUAD, LUSC or non-diagnostic (ND). Next, we extract a collection of statistical and morphological measurements from the labeled whole-slide image (WSI) and use a random forest regression model to classify each WSI as lung adenocarcinoma or lung squamous cell carcinoma. This task is part of the Computational Precision Medicine challenge at the MICCAI 2017 conference, where we achieved the greatest classification accuracy with a score of 0.81

    Histopathological image analysis: a review,”

    Get PDF
    Abstract-Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: a report of the international immuno‐oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer (BC) has been well established, and tumor-infiltrating lymphocytes (TILs) have emerged as a predictive and prognostic biomarker for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) breast cancer (TNBC) and HER2-positive breast cancer. How computational assessment of TILs can complement manual TIL-assessment in trial- and daily practices is currently debated and still unclear. Recent efforts to use machine learning (ML) for the automated evaluation of TILs show promising results. We review state-of-the-art approaches and identify pitfalls and challenges by studying the root cause of ML discordances in comparison to manual TILs quantification. We categorize our findings into four main topics; (i) technical slide issues, (ii) ML and image analysis aspects, (iii) data challenges, and (iv) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns, or design choices in the computational implementation. To aid the adoption of ML in TILs assessment, we provide an in-depth discussion of ML and image analysis including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial- and routine clinical management of patients with TNBC

    Why rankings of biomedical image analysis competitions should be interpreted with care

    Get PDF
    International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future

    British Library Cataloging in Publication Data

    No full text
    A catalogue record for this book is available from the British Library Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted in any form or by means, with the prior permission in writing from the publishers, or in the reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. c BMVA July 2010 The use of registered names or trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information published in this book and cannot accept any legal responsibility for any errors of omission that may be made. Published by University of Warwick, UK. Hardcopy proceedings printed and bound in the United Kingdom by Warwick Print, University of Warwick, Coventry CV4 7AL. Forewor
    corecore