1,241 research outputs found

    Work Roll Cooling System Design Optimisation in Presence of Uncertainty

    Get PDF
    Organised by: Cranfield UniversityThe paper presents a framework to optimise the design of work roll based on the cooling performance. The framework develops Meta models from a set of Finite Element Analysis (FEA) of the roll cooling. A design of experiment technique is used to identify the FEA runs. The research also identifies sources of uncertainties in the design process. A robust evolutionary multi-objective algorithm is applied to the design optimisation I order to identify a set of good solutions in the presence of uncertainties both in the decision and objective spaces.Mori Seiki – The Machine Tool Compan

    Djelomična algebrizacija i odrezani Coulombov potencijal

    Get PDF
    We have applied partial algebraization technique to the cut-off Coulomb potential −Ze2/(r + β). It has been found that for a spin j representation 2j + 1 exact solutions are obtained but they belong to excited states of potentials for different values of β. Degeneracies observed in the spectrum have been compared with exact numerical results.Primijenili smo tehniku djelomične algebrizacije na odrezani Coulombov potencijal −Ze2/(r+β). Nađeno je da se za spin j dobiva 2j+1 točnih rješenja, koja pripadaju pobuđenim stanjima potencijala za različite vrijednosti β. Opažene degeneracije u spektru uspoređene su s točnim numeričkim rezultatima

    Djelomična algebrizacija i odrezani Coulombov potencijal

    Get PDF
    We have applied partial algebraization technique to the cut-off Coulomb potential −Ze2/(r + β). It has been found that for a spin j representation 2j + 1 exact solutions are obtained but they belong to excited states of potentials for different values of β. Degeneracies observed in the spectrum have been compared with exact numerical results.Primijenili smo tehniku djelomične algebrizacije na odrezani Coulombov potencijal −Ze2/(r+β). Nađeno je da se za spin j dobiva 2j+1 točnih rješenja, koja pripadaju pobuđenim stanjima potencijala za različite vrijednosti β. Opažene degeneracije u spektru uspoređene su s točnim numeričkim rezultatima

    Quantification of atomic force microscopy tip and sample thermal contact

    Get PDF
    A thermal conduction measurement device was fabricated, consisting of a silicon dioxide membrane with integrated thermal sensors (Pt resistance heater/thermometer and Pt–Au thermocouples) using MEMS technology. Heat transfer between the heated device and a number of unused atomic force microscope and scanning thermal microscope probes was measured. Changes in thermal conduction related to changes in the tip shape resulting from initial contact were observed. The sensors were fabricated by electron beam lithography and lift-off followed by local subtractive processing of a Pt–Au multilayer to form Pt heater–resistance thermometer elements and Pt–Au thermocouples. Thermal isolation from the silicon substrate was provided by dry release of the supporting 50 nm thick SiO2 membrane using an isotropic SF6 inductively coupled plasma etch. The high thermal isolation of the sample combined with the sensitivity of the temperature sensors used allowed the detection of thermal conduction between the tip and the sample with high precision. The measured temperature range of the Pt resistor was 293–643 K. The measured thermal resistance of the membrane was 3 × 105 K/W in air and 1.44 × 106 K/W in vacuum. The tip contact resistance was measured with a noise level of 0.3g0 T at room temperature, where g0 is the thermal resistance quantum

    An energy-efficient cluster head selection in wireless sensor network using grey wolf optimization algorithm

    Get PDF
    Clustering is considered as one of the most prominent solutions to preserve theenergy in the wireless sensor networks. However, for optimal clustering, anenergy efficient cluster head selection is quite important. Improper selectionofcluster heads(CHs) consumes high energy compared to other sensor nodesdue to the transmission of data packets between the cluster members and thesink node. Thereby, it reduces the network lifetime and performance of thenetwork. In order to overcome the issues, we propose a novelcluster headselection approach usinggrey wolf optimization algorithm(GWO) namelyGWO-CH which considers the residual energy, intra-cluster and sink distance.In addition to that, we formulated an objective function and weight parametersfor anefficient cluster head selection and cluster formation. The proposedalgorithm is tested in different wireless sensor network scenarios by varyingthe number of sensor nodes and cluster heads. The observed results conveythat the proposed algorithm outperforms in terms of achieving better networkperformance compare to other algorithms

    A sulfur-rich pi-electron acceptor derived from 5,5 '-bithiazolidinylidene: charge-transfer complex vs. charge-transfer salt

    No full text
    International audienceNovel pi-electron acceptors are still highly desirable for the formation of conducting salts or as n-dopable semiconductors. We describe here two synthetic approaches to substitute a dicyanovinylidene group, C=C(CN)(2) to a thioketone (C=S) in the recently described DEBTTT acceptor where DEBTTT stands for (E)-3,3'-diethyl-5,5'-bithiazolidinylidene-2,4,2',4'-tetrathione. These electron withdrawing groups enhance the electron accepting ability as demonstrated through electrochemical investigations, without hindering the formation of short intra-and intermolecular S center dot center dot center dot S contacts in the solid state. Association of this acceptor 1 with tetramethyltetrathiafulvalene (TMTTF) and decamethylferrocene (Fe(Cp*)(2)) afforded 1 : 1 adducts which were analyzed by single crystal X-ray diffraction. Combined with vibrational and magnetic properties, it appears that [TMTTF][1] behaves as a neutral charge-transfer complex while [Fe(Cp*)(2)][1] is an ionic salt. The concentration of the spin density on the exocyclic sulfur atoms in 1(-center dot) favors the setting of direct anti-ferromagnetic interactions in [Fe(Cp*)(2)][1

    Calibration of multi-layered probes with low/high magnetic moments

    Get PDF
    We present a comprehensive method for visualisation and quantification of the magnetic stray field of magnetic force microscopy (MFM) probes, applied to the particular case of custom-made multi-layered probes with controllable high/low magnetic moment states. The probes consist of two decoupled magnetic layers separated by a non-magnetic interlayer, which results in four stable magnetic states: ±ferromagnetic (FM) and ±antiferromagnetic (A-FM). Direct visualisation of the stray field surrounding the probe apex using electron holography convincingly demonstrates a striking difference in the spatial distribution and strength of the magnetic flux in FM and A-FM states. In situ MFM studies of reference samples are used to determine the probe switching fields and spatial resolution. Furthermore, quantitative values of the probe magnetic moments are obtained by determining their real space tip transfer function (RSTTF). We also map the local Hall voltage in graphene Hall nanosensors induced by the probes in different states. The measured transport properties of nanosensors and RSTTF outcomes are introduced as an input in a numerical model of Hall devices to verify the probe magnetic moments. The modelling results fully match the experimental measurements, outlining an all-inclusive method for the calibration of complex magnetic probes with a controllable low/high magnetic moment
    corecore