194 research outputs found
Wave Propagation in 1-D Spiral geometry
In this article, we investigate the wave equation in spiral geometry and
study the modes of vibrations of a one-dimensional (1-D) string in spiral
shape. Here we show that the problem of wave propagation along a spiral can be
reduced to Bessel differential equation and hence, very closely related to the
problem of radial waves of two-dimensional (2-D) vibrating membrane in circular
geometry
General relativistic treatment of LISA optical links
LISA is a joint space mission of the NASA and the ESA for detecting low
frequency gravitational waves in the band Hz. In order to attain
the requisite sensitivity for LISA, the laser frequency noise must be
suppressed below the other secondary noises such as the optical path noise,
acceleration noise etc. This is achieved by combining time-delayed data for
which precise knowledge of time-delays is required. The gravitational field,
mainly that of the Sun and the motion of LISA affect the time-delays and the
optical links. Further, the effect of the gravitational field of the Earth on
the orbits of spacecraft is included. This leads to additional flexing over and
above that of the Sun. We have written a numerical code which computes the
optical links, that is, the time-delays with great accuracy
metres - more than what is required for time delay interferometry (TDI) - for
most of the orbit and with sufficient accuracy within metres for an
integrated time window of about six days, when one of the arms tends to be
tangent to the orbit. Our analysis of the optical links is fully general
relativistic and the numerical code takes into account effects such as the
Sagnac, Shapiro delay, etc.. We show that with the deemed parameters in the
design of LISA, there are symmetries inherent in the configuration of LISA and
in the physics, which may be used effectively to suppress the residual laser
noise in the modified first generation TDI. We demonstrate our results for some
important TDI variables
Swarm-intelligent search for gravitational waves from eccentric binary mergers
We implement an eccentric search for compact binary mergers based on particle
swarm optimization. The orbital eccentricity is an invaluable input for
understanding the formation scenarios of the binary mergers and can play a
pivotal role in finding their electromagnetic counterparts. Current modelled
searches rely on pre-computed template banks that are computationally expensive
and resistant towards expanding the search parameter space dimensionality. On
the other hand, particle swarm optimization offers a straightforward algorithm
that dynamically selects template points while exploring an arbitrary
dimensional parameter space. Through extensive evaluation using simulated
signals from spin-aligned eccentric binary mergers, we discovered that the
search exhibits a remarkable autonomy in capturing the effects of both
eccentricity and spin. We describe our search pipeline and revisit some of the
merger candidates from the gravitational wave transient catalogs
Standard Coupling Unification in SO(10), Hybrid Seesaw Neutrino Mass and Leptogenesis, Dark Matter, and Proton Lifetime Predictions
We discuss gauge coupling unification of the SM descending directly from
SO(10) while providing solutions to the three outstanding problems: neutrino
masses, dark matter, and the baryon asymmetry of the universe. Conservation of
matter parity as gauged discrete symmetry in the model calls for high-scale
spontaneous symmetry breaking through Higgs representation. This
naturally leads to the hybrid seesaw formula for neutrino masses mediated by
heavy scalar triplet and right-handed neutrinos. The seesaw formula predicts
two distinct patterns of RH masses, one hierarchical and another not so
hierarchical (or compact) when fitted with the neutrino oscillation data.
Predictions of the baryon asymmetry via leptogenesis are investigated through
the decays of both the patterns of RH masses. A complete flavor analysis
has been carried out to compute CP-asymmetries and solutions to Boltzmann
equations have been utilized to predict the baryon asymmetry. The additional
contribution to vertex correction mediated by the heavy left-handed triplet
scalar is noted to contribute as dominantly as other Feynman diagrams. We have
found successful predictions of the baryon asymmetry for both the patterns of
RH masses. The triplet fermionic dark matter at the TeV scale carrying
even matter parity is naturally embedded into the non-standard fermionic
representation of SO(10). In addition to the triplet scalar and the
triplet fermion, the model needs a nonstandard color octet fermion of mass
GeV to achieve precision gauge coupling unification. Threshold
corrections due to superheavy components of and other representations
are estimated and found to be substantial. It is noted that the proton life
time predicted by the model is accessible to the ongoing and planned
experiments over a wide range of parameter space.Comment: 58 pages PDFLATEX, 19 Figures, Revised as suggested by JHEP Revie
Optimising the directional sensitivity of LISA
It was shown in a previous work that the data combinations canceling laser
frequency noise constitute a module - the module of syzygies. The cancellation
of laser frequency noise is crucial for obtaining the requisite sensitivity for
LISA. In this work we show how the sensitivity of LISA can be optimised for a
monochromatic source - a compact binary - whose direction is known, by using
appropriate data combinations in the module. A stationary source in the
barycentric frame appears to move in the LISA frame and our strategy consists
of "coherently tracking" the source by appropriately "switching" the data
combinations so that they remain optimal at all times. Assuming that the
polarisation of the source is not known, we average the signal over the
polarisations. We find that the best statistic is the `network' statistic, in
which case LISA can be construed of as two independent detectors. We compare
our results with the Michelson combination, which has been used for obtaining
the standard sensitivity curve for LISA, and with the observable obtained by
optimally switching the three Michelson combinations. We find that for sources
lying in the ecliptic plane the improvement in SNR increases from 34% at low
frequencies to nearly 90% at around 20 mHz. Finally we present the
signal-to-noise ratios for some known binaries in our galaxy. We also show
that, if at low frequencies SNRs of both polarisations can be measured, the
inclination angle of the plane of the orbit of the binary can be estimated.Comment: 16 pages, 8 figures, submitted to Phys Rev
A User’s Perspective on the Database of Services Sector in Indian Economy
Measuring the contribution of services to the Indian economy is a challenging task because it presents problems not encountered in the primary and secondary sectors. The authors discuss problems found particularly in quantifying the contribution of the banking and software sectors and suggest ways of overcoming these problems.database; services sector; banking; software sector; India
Ca2+ Efflux from Temperature Sensitive Liposomes and In Situ Formation of Metal Cholate Liposome Gels: Basic Studies and Potentials for Sustained Site-Specific Drug Delivery
Liposomes or vesicles are biomimetic close containers for the delivery of drugs at the local site for an extended period of time. On the other hand hydrogels which are three-dimensional hydrophilic matrices are another class of popular materials for sustained release. Such hybrids combine the features of liposomes and polymer to ensure a sustained local drug delivery. In the present work a novel liposome/hydrogel soft assembly is explored which may be potentially useful for drug delivery applications. We report thermally triggered release of Ca+2 from temperature sensitive liposomal compartments constituted as 90 mol% DPPC and 10 mol% DMPC to induce rapid gelation of a solution of calcium cholate and AgNO3 (extravesicular precursor fluid). Calcium chloride loaded liposomes were prepared using the lipid film rehydration method. The formation of unilamellar bilayer were supported by the fluorometric studies using a compatible and labeled fluoropore (NBD-PS). Hydrogels were obtained by mixing Ca+2 loaded liposome with extravesicular precursor fluid and incubating the content at 37oC. The concentration of the cholate during gelation was sublytic in order to avoid vesicle solubilization. The integrity of liposomes within the hydrogels were preserved during gelation as confirmed by transmission electron microscopy (TEM). The presence of low concentration of cholate (for example 0.05 mM) also permitted spectrophotometric monitoring of Ca+2 efflux for Ca-vesicles employing calcium sensitive dye, Arsenazo III. We expect that this simple experiment may also be useful for developing implantable as well as rapidly gelling injectable biomaterials for site-specific drug delivery. The present work is also significant as the antimicrobial properties of hydrogels containing silver has been widely recognized for its therapeutic profile.  Keywords: Liposome, triggered release, metal cholate liposome gel, site-specific delivery
Gyroscopic Precession and Inertial Forces in Axially Symmetric Stationary Spacetimes
We study the phenomenon of gyroscopic precession and the analogues of
inertial forces within the framework of general relativity. Covariant
connections between the two are established for circular orbits in stationary
spacetimes with axial symmetry. Specializing to static spacetimes, we prove
that gyroscopic precession and centrifugal force both reverse at the photon
orbits. Simultaneous non-reversal of these in the case of stationary spacetimes
is discussed. Further insight is gained in the case of static spacetime by
considering the phenomena in a spacetime conformal to the original one.
Gravi-electric and gravi-magnetic fields are studied and their relation to
inertial forces is established.Comment: 21 pages, latex, no figures, http://202.41.67.76/~nayak/gpifass.te
- …