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3 IISER-Kolkata, Blok HC-7, Setor 3, Saltlake, Kolkata - 700106, India.Abstrat. LISA is a joint spae mission of the NASA and the ESA for deteting lowfrequeny gravitational waves in the band 10−5

− 1 Hz. In order to attain the requisitesensitivity for LISA, the laser frequeny noise must be suppressed below the other seondarynoises suh as the optial path noise, aeleration noise et. This is ahieved by ombiningtime-delayed data for whih preise knowledge of time-delays is required. The gravitational�eld, mainly that of the Sun and the motion of LISA a�et the time-delays and the optiallinks. Further, the e�et of the gravitational �eld of the Earth on the orbits of spaeraft isinluded. This leads to additional �exing over and above that of the Sun. We have written anumerial ode whih omputes the optial links, that is, the time-delays with great auray
∼ 10−2 metres - more than what is required for time delay interferometry (TDI) - for mostof the orbit and with su�ient auray within ∼ 10 metres for an integrated time window ofabout six days, when one of the arms tends to be tangent to the orbit. Our analysis of theoptial links is fully general relativisti and the numerial ode takes into aount e�ets suhas the Sagna, Shapiro delay, et.. We show that with the deemed parameters in the designof LISA, there are symmetries inherent in the on�guration of LISA and in the physis, whihmay be used e�etively to suppress the residual laser noise in the modi�ed �rst generationTDI. We demonstrate our results for some important TDI variables.PACS numbers: 95.55.Ym, 04.80.Nn, 07.60.Ly
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General relativisti treatment of LISA optial links 21. IntrodutionA number of ground-based large-sale interferometri gravitational wave detetors, with optimalsensitivity in the frequeny window ∼ 10 Hz � 1 kHz are operational world-wide [1℄. Among thelarge sale detetors, detetors of armlengths of few kilometres, the LIGO detetors of the UShave now been ontinuously operating at initial design sensitivity whih gives them a maximumrange of about 25 Mp for ompat neutron star - neutron star binaries. The VIRGO detetorof Frane and Italy has also attained omparable sensitivity. The detetors have been built withthe realisti goal of diretly observing gravitational waves (GW's) for the �rst time.A natural limit ours on dereasing the lower frequeny ut-o� of 10 Hz beause it is notpratial to inrease the armlengths on ground and also beause of the gravity gradient noisewhih is di�ult to eliminate below 10 Hz. The solution is to build an interferometer in spae,where suh noises will be absent and allow the detetion of GW in the low frequeny regime.LISA - Laser Interferometri Spae Antenna - is a proposed mission whih will use oherent laserbeams exhanged between three idential spaeraft forming a giant (almost) equilateral triangleof side 5 × 106 kilometres to observe and detet low frequeny osmi GW [2℄. The ground-based detetors and LISA omplement eah other in the observation of GW in an essential way,analogous to the optial, radio, X-ray, γ-ray et., observations do for the eletromagneti waves.In ground based detetors the arms are as symmetrial as possible so that the laser lightexperienes nearly idential delay in eah arm of the interferometer. This arrangement reduesthe laser frequeny/phase noise at the photodetetor. Redution of noise is ruial sine the rawlaser noise is orders of magnitude larger than other noises in the interferometer. But perfetsymmetry is not possible, and an e�ient system of servo loops is neessary for reahing anoise level ompatible with the required sensitivity. The required sensitivity of the instrumentan thus only be ahieved by near exat anellation of the laser frequeny noise plus a goodsymmetry of the arms. However, in LISA, the lak of symmetry will be muh larger than interrestrial instruments, and the laser noise, though redued by stabilisation tehniques (still to bedemonstrated), will probably be still too high. LISA onsists of three orrelated interferometers,whih produe redundany in the data, and this an be used to suppress the laser frequenynoise. In LISA, six data streams arise from the exhange of laser beams between the threespaeraft - it is not possible to boune laser beams between di�erent spaeraft, as is done inground based detetors, beause after 5 million km propagation, the intensity of light reahingthe target spaeraft is redued by 10 orders of magnitude; but in the target spaeraft a laseris loked in phase on the reeived wave, so that the seondary beam is re-emitted without lossof phase information to the primary soure. This is analogous to the RF transponder sheme,as was done in the early experiments for deteting GW by Doppler traking a spaeraft fromEarth [3℄.Laser frequeny noise whih dominates the other noises by 7 or 8 orders of magnitudemust be removed if LISA is to ahieve the required sensitivity of h ∼ 10−22, where h is themetri perturbation aused by a gravitational wave. This anellation is ahieved by time-delayinterferometry (TDI) where the six data streams are ombined with appropriate time-delays.This is possible beause of the redundany present in the data. This work was put on a soundfooting by showing the data ombinations had an algebrai struture; the data ombinationsanelling laser frequeny noise formed the module of syzygies over the polynomial ring of time-delay operators [4℄. This work was done for stationary LISA in �at spaetime where the motion ofLISA as well as the ambient gravitation �eld, mainly that of the sun, was ignored. These were theso-alled �rst generation TDI. However, LISA spaeraft exeute a rotational motion and also thebakground spaetime is urved, all of whih a�et the optial links and the time-delays. Thusthe Sagna e�et, Einstein e�et, Shapiro delay, et. are important and must be inorporated



General relativisti treatment of LISA optial links 3into the analysis if the laser frequeny noise is to be e�etively anelled. We here take intoonsideration all these e�ets in the full framework of general relativity. However, we omputethe orbits of spaeraft in the Newtonian framework. The base orbits we take to be Keplerian inthe gravitational �eld of the Sun only, assuming the Sun to be a point mass. On these base orbits,we linearly superpose the perturbative e�et of the Earth's gravitational �eld. We hoose theEarth over Jupiter �rstly beause, the Earth perturbs the Keplerian orbit in resonane, resultingin unbounded growing of the perturbations and seondly, beause of the tehnial reason thatthe Earth's e�et an be easily aommodated within Clohessy-Wiltshire (CW) framework [5℄.Moreover we argue that Jupiter's e�et is less than 10% of that of the Earth's and hene not adominant one. The analyti approah helps to gain insight and understanding of the problem.Finally, given the arm �exing for our model of LISA, we ompute the residual laser frequenynoise spetrum for some important TDI observables, namely, the Sagna, the Mihelson andthe Symmetri Sagna in their modi�ed �rst generation form. We �nd that the residual laserfrequeny noise in general tends not to be very high as ompared with the seondary noises. Ifthis level of noise is found to be aeptable, then there may be no need to use seond generationTDI observables, whih in general involve higher degree polynomials in time-delay operators andthus require more interpolations whih in turn result in larger errors in the data analysis.We believe that the omputations that we present here of the model would be of help in thedevelopment of a LISA simulator, the LISACode for instane [6℄, beause, (i) we have taken intoaount the relativisiti e�ets and (ii) the e�et of the perturbation of the orbit due to the Earth.Also it would be useful to ompare the model with atual data and look for any disrepanies.Any disrepany arising ould be interesting beause that would imply the existene of somephysial ause whih has been overlooked and therefore would have to be inorporated into thedata analysis.2. The spaeraft orbits and �exing of LISA's armsWe �rst desribe the orbits in the gravitational �eld of the sun only. These are the usual Keplerianorbits. We then give the desription of the same orbits in terms of the CW equations. This pavesthe way for inluding the e�et of the Earth. Finally, we use the CW framework to inlude theperturbative e�ets of the Earth.2.1. The Keplerian orbits of spaeraft in the Sun's �eldThe Keplerian orbits are hosen so that the peak to peak variation in armlengths is the least
∼ 48000 km, see [7℄. We summarise the results of this paper below. We hoose the Sun as theorigin with Cartesian oordinates {X,Y, Z} as follows: The elipti plane is the X − Y planeand we onsider a irular referene orbit of radius R equal to 1 A. U. entred at the Sun. Let
δ0 = 5α/8 where α = L0/2R and L0 ∼ 5, 000, 000 km is a onstant representing the nominaldistane between two spaeraft of the LISA on�guration. We hoose the tilt of the plane ofthe LISA triangle to be δ = π/3 + δ0 (this results in minimum �exing of the arms). We hoosespaeraft 1 to be at its lowest point (maximum negative Z) at t = 0. This means that at thispoint, Y = 0 and X ≃ R(1 − e). The orbit of the �rst spaeraft is an ellipse with inlinationangle ǫ0, eentriity e and satisfying the above initial ondition.From the geometry, ǫ0 and e are obtained as funtions of δ,

tan ǫ0 =
α sin δ

α cos δ + sin(π/3)
,

e =

[

1 +
4

3
α2 +

4√
3
α cos δ

]1/2

− 1 . (1)



General relativisti treatment of LISA optial links 4The equations for the orbit of spaeraft 1 are given by:
X1 = R(cosψ1 − e) cos ǫ0,

Y1 = R
√

1 − e2 sinψ1,

Z1 = −R(cosψ1 − e) sin ǫ0. (2)The eentri anomaly ψ1 is impliitly given in terms of t by,
ψ1 − e sinψ1 = Ωt− φ0 , (3)where t is the time and Ω is the average angular veloity and φ0 the initial phase. The orbitsof the spaeraft 2 and 3 are obtained by rotating the orbit of spaeraft 1 by 2π/3 and 4π/3about the Z−axis; the phases ψ2, ψ3, however, must be adjusted so that the spaeraft are at adistane ∼ L0 from eah other. The orbital equations of spaeraft k = 2, 3 are:
Xk = X1 cosσk − Y1 sinσk ,

Yk = X1 sinσk + Y1 cosσk ,

Zk = Z1 , (4)where σk = (k − 1) 2π
3 , with the aveat that the ψ1 is replaed by the phases ψk, where they areimpliitly given by,

ψk − e sinψk = Ωt− σk − φ0. (5)These are the exat (Keplerian) expressions for the orbits of the three spaeraft in the Sun's�eld. In [7℄ it was shown that these orbits produe minimum �exing of LISA's arms when onlythe Sun's �eld is onsidered. Our next goal is to inlude the Earth's �eld and ompute the�exing of LISA's arms in the ombined �eld of the Sun and Earth. For this purpose we use theClohessy-Wiltshire framework.2.2. The Clohessy-Wiltshire frameworkClohessy and Wiltshire make a transformation to a frame - the CW frame {x, y, z} whih has itsorigin on the referene orbit and also rotates with angular veloity Ω. The x diretion is normaland oplanar with the referene orbit, the y diretion is tangential and omoving, and the zdiretion is hosen orthogonal to the orbital plane. They write down the linearised dynamialequations for test-partiles in the neighbourhood of a referene partile (suh as the Earth).The length sale here is the Earth-Sun distane of 1 A. U. and the equations are appliable todistanes small ompared with this length sale. Sine the frame is noninertial, Coriolis andentrifugal fores appear in addition to the tidal fores. The advantage of the CW equations isthat it is easy to see that to the �rst order in α (or equivalently e) there exist on�gurationsof spaeraft so that the mutual distanes between them remain onstant in time. The �exingappears only when we onsider seond and higher order terms in α. In fat in [7℄ we �nd thatthe seond order terms are su�ient to desribe the �exing of LISA's arms quite aurately.We take the referene partile to be orbiting in a irle of radius R with onstant angularveloity Ω. Then the transformation to the CW frame {x, y, z} from the baryentri frame
{X,Y, Z} is given by,

x = (X −R cosΩt) cosΩt + (Y −R sin Ωt) sin Ωt ,

y = − (X −R cosΩt) sin Ωt + (Y −R sin Ωt) cosΩt ,

z = Z. (6)



General relativisti treatment of LISA optial links 5In the CW frame, the CW equations to seond order in α (this inludes upto the otupole �eldof the Sun) are,
ẍ− 2Ωẏ − 3Ω2x+

3αΩ2

L0
(2x2 − y2 − z2) = 0 ,

ÿ + 2Ωẋ− 6αΩ2

L0
xy = 0 ,

z̈ + Ω2z − 6αΩ2

L0
xz = 0. (7)If we drop the terms in α in these equations we get the original CW equations (upto quadrupole).The solutions to these equations (that is upto quadrupole order) we all the zero'th order. Amongthese we hoose the solutions whih form an equilateral triangular on�guration of side L0. Forthe kth spaeraft we have the following oordinates:

xk = − 1

2
ρ0 cos(Ωt− σk − φ0) ,

yk = ρ0 sin(Ωt− σk − φ0) ,

zk = −
√

3

2
ρ0 cos(Ωt− σk − φ0) , (8)where ρ0 = L0/

√
3. Also at t = 0 the initial phase of the on�guration is desribed through φ0.In this solution, any pair of spaeraft maintain the onstant distane L0 between eah other.In [7℄ we have shown that if inlude the α terms (otupolar terms) and solve perturbativelyusing the zeroth order solution as given by Eq.(8), we obtain the �exing of the arms. Further,this approximate solution agrees to a remarkable degree with the �exing dedued from the exatKeplerian orbits.2.3. The e�et of the EarthLISA follows the Earth 20◦ behind. We onsider the model where the entre of the Earth leads theorigin of the CW frame by 20◦ - thus in our model, the `Earth' or the entre of fore representingthe Earth, follows the irular referene orbit of radius 1 A. U. Also the Earth is at a �xed positionvetor r⊕ = (x⊕, y⊕, z⊕) in the CW frame. We �nd that x⊕ = −R(1− cos 20◦) ∼ −9× 106 km,

y⊕ = R sin 20◦ ∼ 5.13 × 107 km and z⊕ = 0, where we have taken R to be 1 A. U.. The fore�eld F due to the Earth at any point r (in partiular at any spaeraft) in the CW frame is givenby:
F(r) = −GM⊕

r− r⊕

|r − r⊕|3
, (9)whereM⊕ ∼ 5.97×1024 kg is the mass of the Earth and G = 6.67×10−11 kg−1m3sec−2 Newton'sgravitational onstant.In order to write the CW equations in a onvenient form we �rst de�ne the small parameter

ǫ in terms of the quantity ω2
⊕ = GM⊕/d

3
⊕, where d⊕ = |r⊕| is the distane of the Earth from theorigin of the CW frame; d⊕ ∼ 5.2× 107 km whih is more than 50 million km. So when derivingthe foring term we make the aprroximation |r − r⊕| ≈ d⊕, that is, we neglet |r| ompared to

d⊕. It will turn out that the �exing due to the Earth is small so that this approximation is notunjusti�ed. We de�ne ǫ = ω2
⊕/Ω

2 ≃ 7.16 × 10−5 whih is the just the ratio of the tidal foresdue to the Earth and the Sun. The CW equations inluding the Earth's �eld take the form:
ẍ− 2Ωẏ − 3Ω2x+ ǫΩ2(x− x⊕) = 0 ,

ÿ + 2Ωẋ+ ǫΩ2(y − y⊕) = 0 ,

z̈ + Ω2(1 + ǫ)z = 0. (10)



General relativisti treatment of LISA optial links 6Note that the ompounded �exing due to the ombined �eld of Earth and Sun is nonlinear; itis infat a three body problem. We however solve this problem approximately. Assuming thatboth e�ets are small we may linearly add the �exing vetors due to the Sun and Earth; thatis, add the perturbative solutions obtained from Eqs.(7) and (10); the nonlinearities appear athigher orders in α and ǫ. These would modify the �exing but we may neglet this e�et beauseof the smallness. As it will turn out, the �exing produed due to the Earth is of the order of 1or 2 m/se upto the third year, just about 40 % of that due to the Sun. But, as shown in [7℄ the�exing produed by the Sun's otupole �eld is nearly exat to that produed by the Keplerianorbits. Thus we may do better by linearly adding the �exing vetor produed by the Earth to theKeplerian orbit of the relevant spaeraft. We therefore, �rst ompute the motion of spaeraftperturbatively using the zero'th order solutions as given in Eq.(8). This will indue a �exing ofthe LISA arms only by the Earth's �eld.We now seek perturbative solutions to Eq. (10) to the �rst order in ǫ. We write,
x = x0 + ǫx1, y = y0 + ǫy1, z = z0 + ǫz1 where x0, y0, z0 are solutions at the zeroth order givenby Eq.(8). We put σk = 0 (or equivalently inlude it in φ0) in these solutions for simplifying thealgebra.Note that the z equation is deoupled from the x and y equations whih are themselvesoupled; infat the z equation an be solved exatly. We also assume the initial onditions forthe perturbative solutions to be homogeneous, that is, we take, x1 = y1 = z1 = ẋ1 = ẏ1 = ż1 = 0at t = 0 - the spaeraft are in the desired positions initially.We �rst solve the x and y equations. To the �rst order in ǫ, the equations for theseperturbations are:̈

x1 − 2Ωẏ1 − 3Ω2x1 = Ω2x⊕ +
1

2
Ω2ρ0 cos(Ωt− φ0) ,

ÿ1 + 2Ωẋ1 = Ω2y⊕ − Ω2ρ0 sin(Ωt− φ0) . (11)We note that the foring terms on the right hand side of these equations appear at the samefrequeny Ω and hene they imply resonane. This means that the Earth's e�et on LISA isumulative as the detailed alulations show below. Therefore, it is most important to inludethe e�et of the Earth on LISA.The equation for y1 an be easily integrated, one, with the initial onditions mentionedabove and the ẏ1 substituted in the x1 equation resulting in a deoupled equation for x1. Thisdeoupled equation an be solved to yield the solution for the perturbation x1. The solution x1in turn an be substituted bak into the y1 equation to obtain a �rst order equation for y1 andintegrated with the initial onditions. Without further ado we state the results:
x1 = − ρ⊕ cos(Ωt− φ⊕) + x⊕ + 2y⊕Ωt− 2ρ0 cosφ0 +

5

4
ρ0Ωt sin(Ωt− φ0) ,

y1 = 2ρ⊕[sin(Ωt− φ⊕) + sinφ⊕] − 3

2
ρ0[sin(Ωt− φ0) + sinφ0]

+
5

2
ρ0Ωt cos(Ωt− φ0) − Ωt(2x⊕ − 3ρ0 cosφ0) −

3

2
Ω2t2y⊕ , (12)where,

ρ2
⊕ = (x⊕ − 2ρ0 cosφ0)

2 + (2y⊕ − 5

4
ρ0 sinφ0)

2 ,

tanφ⊕ =
2y⊕ − 5

4ρ0 sinφ0

x⊕ − 2ρ0 cosφ0
. (13)The z equation an be exatly integrated and used diretly to obtain the �exing. However, wean also expand this solution to the �rst order in ǫ and the result is:

z1 =

√
3

4
ρ0[Ωt sin Ωt cosφ0 − (Ωt cosΩt− sin Ωt) sinφ0] . (14)



General relativisti treatment of LISA optial links 7We observe that sine y⊕ is very large ompared to other distanes in ρ⊕, we have ρ⊕ ∼ 2y⊕ ∼ 108km. Seondly φ⊕ ∼ π/2 for the same reason. For spaeraft 1, for instane, with the initialondition φ0 = 0, φ⊕ ∼ 91.83◦. This aids in simplifying muh of the omputations.We now turn to the �exing of the arms for whih we must ompute the perturbation of eahspaeraft orbit due to the Earth. As argued previously, we merely add the perturbation givenby ǫr1 = ǫ(x1, y1, z1) to the Keplerian orbit of eah spaeraft. For spaeraft 1, the Keplerianorbit is given by Eq. (2) and Eq. (3) in the baryentri frame. We denote this zeroth order orbitby the vetor trajetory R0(t;φ0) having the initial phase φ0. We then hoose the zeroth ordersolution in the CW frame orresponding to this orbit whih is given by Eq. (8) with k = 1 or
σ1 = 0. With this solution we ompute the perturbative solution r1(t;φ0) and �nally obtain thetotal orbit R1(t;φ0) = R0(t;φ0) + ǫr1(t;φ0). We repeat the same proedure for the other twospaeraft and obtain the orbits whih now inlude the e�et of the Earth as well. The �exingof the LISA arms is now due to both the Sun and the Earth. Below in Figure 1, we plot the�exing of LISA's arms as a funtion of t, assuming onstant length L0 in the Sun's �eld, thatis, we take R0 as given from Eq.(8) so in e�et we are onsidering only the �exing due to theEarth. We also take φ0 = 0 as the initial ondition.
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Figure 1. The �gure shows the e�et of only the Earth on �exing of the three arms of LISAfor a period of three years. The �exing grows to a maximum of about 20,000 km in the thirdyear whih is about 40% of the �exing due to the Sun.We notie that the �exing inreases with time; in third year it grows to a maximum of about20,000 km from the initial value. This variation is about 40% of that due to the Sun - ∼ 48, 000km. Of ourse, one must onsider the vetor additions, so that the total �exing will in generalbe less than this or even redue if the �exing vetors are oppositely oriented. Also by looking atthe slope of the urves we note that the rate of hange of armlength is of the order of a metre/sein the the seond year and less than 2 metres/se in the third year. Thus at least in the �rstthree years we do not expet the �exing to be a�eted too muh by the Earth. The �exing alsodepends on the initial phase φ0, that is, the epoh at whih the gravitational �eld of the Earthis `swithed on'. Here there is also a symmetry; the �exing pro�les remain invariant if we hange
φ0 to φ0 + π/3. Although, for di�erent φ0 the �exing pro�les di�er in detail, they display thesimilar qualitative behaviour.The next task is to ompute the optial links with the above spaeraft orbits from whihthe total �exing due to the Sun and Earth an be dedued.



General relativisti treatment of LISA optial links 83. The numerial omputation of optial linksThe time-delay that is required for the TDI operators needs to be known very aurately -at least to 1 part in 108, that is, to about few metres - for the laser frequeny noise to besuppressed. In order to guarantee suh level of auray, we have to numerially ompute theoptial links or the time-delay. This approah is guaranteed to give the desired auray oreven better auray than what is required. In this approah, we numerially integrate the nullgeodesis followed by the laser ray emitted by one spaeraft and reeived by the other. Thisomputation is performed in the baryentri frame, and taking into aount the fat that thespaetime is urved by the Sun's mass. The omputation here is further ompliated by thefat that the spaeraft are moving in this frame of referene and the photon emitted from onespaeraft must be reeived by the other spaeraft. We use the Runga-Kutta numerial shemeto integrate the di�erential equations desribing the null geodesis. But sine the end point ofthe photon trajetory is not known apriori, an iterative sheme must be devised for adjustingthe parameters of the null geodesi, in order that the worldlines of the photon and the reeivingspaeraft interset. We have devised suh a sheme based on the di�erene vetor between thephoton position vetor and reeiving spaeraft position vetor. The six optial links Lij havethus been numerially omputed with su�ient auray required for TDI: for 98% of the timethe ode we have devised gives exellent results to the auray of 10−2 metres with 105 steps.For the rest of the time, 2%, when the any one of the arms tends to lie tangent to the orbit, onemust inrease the number of steps. We inrease the number of steps to 107. Then the ode givesresults aurate upto 10 metres exept in a window of about half an hour when the error exeedsthis value and beomes unaeptably large. This is beause the di�erential equations desribingthe null geodesis enounter sign hanges in the omponents of the tangent vetor whih mustbe arefully inorporated into the integration sheme. Suh windows our six times in a yeartwo months apart. In this paper we hoose to ignore these time windows.3.1. Optial links: integrating the null geodesi equationsWe now turn to the optial links. The spaetime geometry taking only the Sun as the gravitatingmass is given by the Shwarzshild spaetime whose metri in isotropi oordinates is desribedby:
ds2 = f(r)c2dt2 − g(r)[dr2 + r2(dθ2 + sin2 θdφ2)] , (15)where the funtions f(r) and g(r) are given by:
f(r) = 1 − 2m

r
, g(r) = 1 +

2m

r
. (16)Here m = GM/c2 where M is the mass of the Sun, c the speed of light and G the Newton'sgravitational onstant.The null geodesis satisfy the di�erential equations:

ṙ = ǫr
f

g

√

g

f
− b2

r2
, (17)

θ̇ = ǫθ
1

r2
f

g

√

b2 − L2

sin2 θ
, (18)

φ̇ =
f

g

L

r2 sin2 θ
. (19)Here ǫr,θ are the appropriate signs for the orbit equations, the overdot is d/cdt, where c is thespeed of light, b is the impat parameter and L the azimuthal angular momentum.



General relativisti treatment of LISA optial links 9Sine the spaeraft are moving, the parameters b and L are not known apriori, but shouldbe obtained from the solution by an iterative sheme. Let us �rst onsider the optial link,say link 12, from S/C 1 (position vetor r1(t)) to S/C 2 (position vetor r2(t)) where t is theoordinate time in the isotropi oordinates. Sine the spae is almost �at, we take the zero-thorder estimate as �at spaetime. Then the initial estimate of b is given by:
b(0) = |r1(t0) × n| (20)where t0 is the time at whih S/C 1 emits the photon. Similarly for L, the zero-th order estimatedenoted by L(0) is the z-omponent of the vetor r1(t0) × n(0) and n(0) points towards S/C 2.To start with a better estimate of n(0) we take the better estimate of the delayed position ofS/C 2 at t + L0/c (note this is still not the orret �nal position of S/C 2, when the photonmeets S/C 2). The null geodesi (photon orbit) is then integrated till the time as required in�at spaetime. The photon obviously does not hit the S/C 2, beause (i) S/C 2 has moved inthe meanwhile, (ii) Shapiro delay: the photon is delayed beause of the gravitational �eld ofthe Sun. The di�erene vetor between the photon and S/C 2 drives the iterative sheme: wedeompose this vetor into parallel and perpendiular omponents with respet to n(0) and usethese projetions to obtain a modi�ed diretion say n(1) (perpendiular omponent) and a newtime of �ight (parallel omponent). The n(1) produes new values of b and L, say, b(1), L(1) andso on until onvergene is reahed to the desired auray.We divide our disussion into two parts: (i) normal time epohs and (ii) anomalous timeepohs (b ∼ L). The anomalous time epohs, our sixth of an year apart when any one of thearms lies tangential to the orbit, that is, for the relevant null geodesi b ∼ L. With the initialonditions, we have hosen, the �rst suh epoh for the link 12 ours at ∼ 52× 105 ses. In thenormal ase, we use 105 steps in the Runga-Kutta sheme, eah step of about 50 km. Just 2 or3 iterations su�e to produe the neessary onvergene and with an auray to 10−2 metres.In the anomalous ase, we need more steps in the Runga-Kutta sheme; we use 107 steps whihgives an auray within 10 metres exept for a window of about half hour. In the anomalousase at least one of the θ̇ and ṙ (or equivalently ǫr and ǫθ) hange sign along the null geodesiand this sign hange must be taken into aount in the Runga-Kutta integration sheme as loseas possible to the turning point. We ahieve this by reduing the step size to ∼ 0.5 km, so thatthe error remains at an aeptable level. Even then in a window of about half an hour, every sixmonths, the error beomes large. We ignore these points by smoothly interpolating.The Figure 2 shows the omparison of the optial link L12 just due to the Sun and whenthe Earth's �eld is also inluded. The �exing inreases by ∼ 20, 000 km (as ompared to L0)when the Earth's �eld is inluded. The �gure is drawn for a time period of about three years and

φ0 is hosen to be zero. The important di�erene due to the ombined �eld is that the motionof spaeraft and hene the variations in armlengths is no more periodi and infat grows withtime. For ertain links (in our ase links 23 and 32), the �exing is infat redued beause the�exing vetors due to the Sun and Earth are oppositely oriented.Figure 3 shows all the six optial links in the ombined �eld of the Sun and Earth.3.2. Flexing of the armsWe also need to estimate the variation in armlength whih is important for the TDI analysis tofollow. Although there has been some adho work on this topi previously, the question needsto be revisited and a omplete solution sought. Here we propose to address the question ofthe residual noise, having given the exat optial links. The �rst important task is to exatlyompute the rate of hange of arm-length. Figure 4 shows the rate of hange of the six optiallinks as a funtion of time over a period of three years.
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Figure 3. The �gure shows the variation in the six optial links of the LISA model for threeyears. The lengths are given in metres.We �nd that in the optimised model of LISA on�guration, this rate of hange is less than4 m/se. if we just onsider the Sun's �eld. Inluding the Earth's �eld the �exing still remains
∼< 6 m/se in the �rst two years and inreases to ∼< 8 m/se in the third year. Earlier estimateswere ∼ 10 m/se. This numerial estimates are most ruial for their e�et on residual laserfrequeny noise in the TDI.4. Time-delay interferometry with variable armlengthsIn order to anel the laser frequeny noise, time-delayed data streams are added together inwhih an appropriate set of time-delays are hosen. In general the time-delays are multiplesof the photon transit time between pairs of spaeraft. In [4℄ a sheme based on modules over
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Figure 4. The rate of hange of armlengths for the six links is shown in units of m/se. Thisrate of hange is less than 6 m/se upto the seond year and inreases to a maximum of about8 m/se in the third year.ommutative rings was given where the module of data ombinations anelling the laser noise wasonstruted. This fully anels the laser frequeny noise for stationary LISA. There are only threedelay operators orresponding to the three armlengths and the time-delay operators ommute.This sheme an be straight forwardly extended to moving LISA [8℄, where, now beause ofSagna e�et, the up and down optial links have di�erent armlengths (photon transit time) butthe armlengths are still onstant in time. Now there are six delay operators orresponding tothe six optial links and they ommute. These are the modi�ed but still �rst generation TDI. Itis ruial for the operators to ommute if this sheme is to work - we must have a ommutativering. However, for LISA the armlengths do hange as a funtion of time - �exing of the arms- and the �rst generation TDI modi�ed or otherwise lead to imperfet anellation of the laserfrequeny noise. Here we onsider the model for LISA whose variation in arm-length is minimumwhen only the Sun's �eld is onsidered. This property may no more exatly hold in the ombined�eld of the Sun and Earth, but assuming that Sun's e�et is dominant the variation in armlengthmay still ontinue to be near optimal. Here, we however, assume the same initial onditions andompute the residual laser noise in the �rst generation modi�ed TDI variables.Let C(t) = ∆ν(t)/ν0 represent the laser frequeny noise in some optial link. Let Dj be thedelay operator orresponding to the armlength Lj(t),i.e. DjC(t) = C(t − Lj(t)). If we operateon C(t) with operators Dj and Dk in di�erent orders, it is easily seen that
DjDkC(t) 6= DkDjC(t). (21)The operators do not ommute. A ombinatorial approah has been adopted in [9℄ to dealwith the totally nonommutative ase. However, our aim here is to estimate the level of thenonommutativity of these operators in the ontext of the LISA model, ompute the residuallaser frequeny noise and ompare it with the other seondary noises in LISA for several of theTDI ombinations. Our investigations will show whether the nonommutativity an be ignoredor one must deal with non-ommutative operators. Here our investigations neessarily takeinto aount the symmetry of the LISA on�guration and therefore we expet the residual laserfrequeny noise to be smaller than if the symmetries were absent.The �rst step is to develop a alulus of the Dj operators.



General relativisti treatment of LISA optial links 124.1. The alulus of the delay operators and relevant ommutatorsWe �nd that for this alulation we require to develop this only to the �rst order in L̇. Thisis beause we �nd for our model L̈ ∼ 10−6 metres/se2 and thus even if one onsiders say 6suessive optial paths, that is, about ∆t ∼ 100 seonds of light travel time, ∆t2L̈ ∼ 10−2metres. This is well below few metres and thus an be negleted in the residual laser noiseomputation. Moreover, L̇2 terms (and higher order) an be dropped sine they are of the orderof ∼< 10−15 (they ome with a fator 1/c2) whih is muh smaller than 1 part in 108. Thealulations whih follow neglet these terms whih simpli�es the omputations and makes themtratable. We begin with the e�et of one operator on C(t) and then by indution obtain thee�et n suesive operators operating on C(t).
DkC(t) = C(t− Lk(t)) ≡ EkC(t) , (22)where Ek is a delay operator with onstant delay by the time Lk(t) at the given time t.Applying the operators twie in suession and dropping higher order terms as explainedabove,
Dk2

Dk1
C = C(t− Lk1

(t− Lk2
) − Lk2

) ,

≈ Ek2
Ek1

C + Lk2
L̇k1

Ek2
Ek1

Ċ . (23)It is easy to generalise the above formula by indution to n operators:
Dkn

...Dk1
C = Ekn

...Ek1
C + fnEkn

...Ek1
Ċ ,

fn =

n
∑

p=2

Lkp

p−1
∑

q=1

L̇kq
. (24)It must be noted that both C and its time derivative are evaluated at the delayed time given bythe suessive appliation of n delay operators Ekm

.We now turn to the ommutators of the operators. These our in many of the LISAobservables and therefore it is useful ompute these. The term in C anels out; only the Ċ termremains. The simplest of the ommutators is:
[Dj , Dk] = DjDk −DkDj = LjL̇k − LkL̇j , (25)where it is understood that the ommutator multiplies Ċ at the delayed time t − Lj(t) − Lk(t)for �xed time t.For short we will write j instead of Dj whenever there is no possibility of onfusion. Thusthe ommutator [Dj , Dk] will be simply written by [j, k]. We list few more ommutators thatour in the observables:
kmj − jkm = (Lk + Lm)L̇j − Lj(L̇k + L̇m) ,

lmjk − jklm = (Ll + Lm)(L̇j + L̇k) − (Lj + Lk)(L̇l + L̇m) ,

lmnxyz − xyzlmn = (Ll + Lm + Ln)(L̇x + L̇y + L̇z) (26)
− (Lx + Ly + Lz)(L̇l + L̇m + L̇n) . (27)This formula generalises in an obvious way to 2n operators.4.2. Residual laser frequeny noise in some important TDI observablesThe laser frequeny noise is usually assumed to be ∼ 30Hz/

√
Hz in most of the literature so far.However, by the time LISA �ies the expetations are for this noise estimate to redue to say

∆ν ∼ 10Hz/
√

Hz. If we divide this number by the laser frequeny ν0 ∼ 3 × 1014 Hz, we obtain



General relativisti treatment of LISA optial links 13the noise estimate in the frational Doppler shift C(t) = ∆ν(t)/ν0 ∼ 3× 10−14. Thus the powerspetral density (PSD) of the noise C is:
SC(f) = 〈|C̃(f)|2〉 ∼ 10−27 Hz−1 , (28)where C̃(f) is the Fourier transform of C(t).From this equation it is easily dedued on di�erentiating that the PSD of the random variable

Ċ is:
SĊ(f) = 4π2f2SC(f) Hz . (29)The ommutators omputed in the last subsetion when divided by c2 have dimension of time(assuming that the dot on Lk is just d/dt). A ommutator is essentially the time di�erene inthe transit times of photons along two di�erent paths - the residual time. This is the reasonwhy the laser frequeny noise does not anel out. If the two paths were exatly equal, the laserfrequeny noise would ompletely anel out as it happens when the armlengths are onstant.In order to ompare the noise in a spei� observable, say, the Sagna or Mihelson, one mustompare the PSD of the seondary noise in that observable (whih has dimensions of Hz−1)with the residual laser frequeny noise PSD whih is given by ∆t2SĊ(f), where ∆t is the timedi�erene. Note that ∆t is a funtion of t as the LISA onstellation evolves and propagates inthe gravitational �eld. We arry out these omputations for the well known observables, suh asthe Sagna, denoted by α, β, γ, the Mihelson observable X , the symmetri Sagna observable

ζ. For the observable ζ, the ommutators have di�erent degree polynomials and therefore, the
Ċ appears at di�erent delays. In the Fourier domain, these then appear as phase fators in ∆t,whih in e�et beomes omplex.We follow the notation and onventions of [8℄ and [4℄ whih are the simplest for our purpose.The six links are denoted by U i, V i, i = 1, 2, 3. The time-delay for the link U2 from S/C 1 toS/C 2 or 1 −→ 2 is denoted by x in [8℄ (whih is 3′ in [9℄ and so on in a yli fashion); thedelay for link U3 from 2 −→ 3 by y; the delay for link U1 from 3 −→ 1 by z. The delays inthe other sense are denoted by l,m, n. The delay for the link −V 1 from 2 −→ 1 by l; and thenlinks V 2, V 3 and the orresponding delays m,n are de�ned through yli permutation. In theformalism any observable X is given by:

X = piV
i + qiU

i , (30)where pi, qi, i = 1, 2, 3 are polynomial vetors in the variables x, y, z, l,m, n. Thus X is spei�edby giving the six tuple polynomial vetor (pi, qi).We observe the following approximate symmetries in our model:
L̇x ≈ L̇l, L̇y ≈ L̇m, L̇z ≈ L̇n , (31)whih also implies (this ombination ours in the Sagna observables),
L̇x + L̇y + L̇z ≈ L̇l + L̇m + L̇n . (32)It was shown in [7℄ that only in the Sun's �eld L̇ij ∝ (sin Ω(t− t

(0)
ij ) + k sin 3Ω(t− t

(0)
ij )) where kis a onstant and t(0)ij are given onstants. When we onsider the sum L̇x + L̇y + L̇z, the phasesfor the links y and z namely, Ωt

(0)
y and Ωt

(0)
z di�er by 2π/3 and 4π/3 from the phase of the link

x and therefore their sum is lose to zero. The same is true for the links l,m, n. Here, whenwe onsider the ombined �eld of the Sun and Earth, this is no longer true but we �nd that,
|(L̇x + L̇y + L̇z) − (L̇l + L̇m + L̇n)| ∼< 1 m/se and |L̇x − L̇l| ∼< 0.8 m/se upto the �rst threeyears in our model. The same is essentially true for the pairs of links y,m and z, n. Thus thesepairs of operators essentially ommute.Thus here, for pratial purposes, we are not dealing with a set of totally nonommutingvariables, but with an intermediate ase in whih the six variables partition pairwise into threepairs, suh that for eah pair the variables essentially ommute, while any other ombination ofvariables does not.



General relativisti treatment of LISA optial links 144.2.1. The Sagna variables: The modi�ed �rst generation TDI observable α is given by thepolynomial vetor in the form (pi, qi) by:
α = (κ, κl, κlm, η, ηzy, ηz) , (33)where κ = 1 − zyx and η = 1 − lmn. If the variables x, y, z, l,m, n ommute then the laserfrequeny noise is fully anelled. However, if they do not ommute, there is a residual term. Letthe laser frequeny noises on eah spaeraft i be Ci respetively (we onsider a single e�etivelaser frequeny noise random variable on eah spaeraft), then the residual term is:
∆C = α1C1 + α2C2 + α3C3 . (34)We �nd that α2 = α3 ≡ 0 and α1 = [zyx, lmn] and so by Eq. (27):
∆t(t) =

1

c2
[(Lx +Ly +Lz)(L̇l + L̇m + L̇n)− (Ll +Lm +Ln)(L̇x + L̇y + L̇z)] , (35)and thus ∆C = ∆tĊ1. Beause the Lk vary during the ourse of an year the ∆t also variesduring the year and so also the amplitude of the random variable ∆C. Thus the PSD of ∆C is:

S∆C(f ; t) = 4π2∆t(t)2f2SC(f) . (36)This is the residual laser frequeny noise in the observable α whih depends on the epoh t.This noise must be ompared with the seondary noise [2℄. However, beause we areonsidering the modi�ed TDI Eq. (33), there are extra fators κ and η whih do not appearin the orresponding �rst generation TDI. These fators introdue an additional multipliativefator, namely, 4 sin2(3πfL0) in the seondary noise PSD whih leaves the SNR unhanged butmust be onsidered when it is ompared with the residual laser frequeny noise given in Eq. (36).Thus,
Sα(f) = 4 sin2(3πfL0){[8 sin2 3πfL0 + 16 sin2 πfL0]Sacc + 6Sopt} (37)where Sacc = 2.5× 10−48(f/1Hz)−2Hz−1 and Sopt = 1.8 × 10−37(f/1Hz)2Hz−1. In the Figure 5we plot Sα(f) and S∆C(f ; t) at three epohs an year apart.
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X = (1 − zn, 0, (lx− 1)z, 1 − lx, (zn− 1)l, 0) (38)The residual term is:
∆C = X1C1 +X2C2 +X3C3 . (39)It is found that X2 = X3 ≡ 0 and X1 = [zn, lx] and hene:
∆t(t) =

1

c2
[(Lz + Ln)(L̇l + L̇x) − (Ll + Lx)(L̇z + L̇n)] (40)Using this value of ∆t in Eq. (36) and Eq. (28) gives the residual noise in the Mihelson variable

X . The PSD of the seondary noise is given by [2℄:
SX(f) = [8 sin2 4πfL0 + 32 sin2 2πfL0]Sacc + 16 sin2 2πfL0Sopt (41)The noise plots are shown in Figure 6. Clearly at low frequenies f ∼< 1 mHz the TDI variable

X su�es, that is, the laser frequeny noise is adequately suppressed. At higher frequenies inmost of the frequeny domain the residual noise remains below 20%.4.2.3. The symmetri Sagna variables: The modi�ed symmetri sagna variables denoted by
ζ in the literature split into three. We onsider here just one of these beause the noise in theothers is essentially the same. It is given by:

ζ = (y(zx−m), (ln− y)z, (zx−m)l,m(ln− y), (ln− y)z, (zx−m)l) . (42)



General relativisti treatment of LISA optial links 16We denote it by just ζ, dropping the subsript, instead of ζ1, beause we will not be expliitlydisussing the other two yli permutations of ζ. The residual laser frequeny noise term anagain be written as ∆C = ζ1C1 + ζ2C2 + ζ3C3 where the ζk an be expressed in terms of theommutators,
ζ1 = [m, y] + [ln, zx]

ζ2 = [(zx−m)l, y]

ζ3 = [m, (ln− y)z] . (43)Note that here none of the ζk are zero and hene ontribute to the total residual noise. Hereit is more appropriate to ompute the random variables ∆Ck de�ned below in terms of theommutators given above and the delay operators Ek:
c2∆C1 = [−LyL̇m + LmL̇y]EmEyĊ1

+ [(Ln + Ll)(L̇x + L̇z) − (Lx + Lz)(L̇n + L̇l)]ExEzEnElĊ1

c2∆C2 = [Ly(L̇l + L̇m) − L̇y(Ll + Lm)]EmElEyĊ2

+ [L̇y(Lx + Lz + Ll) − Ly(L̇x + L̇z + L̇l)]EyElExEzĊ2 ,

c2∆C3 = [−Lm(L̇y + L̇z) + L̇m(Ly + Lz)]EmEyEzĊ3

+ [−L̇m(Ln + Lz + Ll) + Lm(L̇n + L̇z + L̇l)]EmElEnEzĊ3 . (44)We note here that in eah equation, the Ċk is delayed by di�erent amounts. In the Fourier spaethis is translated into omplex phase fators. For the purpose of this omputation assumingequal armlengths L0 for all the links, the e�etive omplex ∆t1 is given by:
c2∆t1(t) = [−LyL̇m + LmL̇y]e−4πifL0

+ [(Ln + Ll)(L̇x + L̇z) − (Lx + Lz)(L̇n + L̇l)]e
−8πifL0 . (45)Similar expressions an be derived for ∆t2 and ∆t3. When omputing the PSDs it is the modulusof ∆tk that enters into their expressions aounting for the phases.We now assume that laser noises Ck are independent of eah other and also have identialPSDs. Therefore we may add the noises quadratially - that is, we take the sum of the PSDs.The result is:

S∆C(f ; t) = 4π2f2(|∆t1|2 + |∆t2|2 + |∆t3|2)SC(f) . (46)This equation desribes the residual laser noise. We must now ompare this PSD with the sumof the PSDs of optial and aeleration noises. This PSD is given by:
Sζ(f) = 4 sin2 πfL0(24 sin2 πfL0Sacc + 6Sopt) . (47)There is an extra fator of 4 sin2 πfL0 in the modi�ed TDI variable zeta in the PSD whihmust be onsidered when omparing with the residual laser frequeny noise. The noise PSDs areplotted in Figure 7. At the low frequeny end f ∼< 1 mHz, the residual noise is lose to Sζ(f),while at higher frequenies it less by an order of magnitude and thus reasonably suppressed.5. Conluding remarksIn this work we have inluded the e�et of the Earth on the �exing of the arms of LISA. We haveomputed the spaeraft orbits in the ombined �eld of the Sun and Earth approximately andfrom this dedued the �exing of the arms of LISA by hoosing the model whih gave minimum�exing when only the Sun's �eld was taken into aount. We note that the �exing in theombined �eld is no more periodi as was the ase when only the Sun's �eld was onsidered. Wehave ignored the e�et of Jupiter beause we believe this e�et to be not so dominant as that
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3
J , similarto ǫ of Earth, where, MJ ≈ 2 × 1027 kg is the mass of Jupiter and dJ , the distane from LISAto Jupiter, whih we take on the average to be ∼ 5 A. U., then ǫJ/ǫ ∼ 0.09. Thus we expetthe e�et of Jupiter to be less than 10% than that due to Earth. Seondly, the foring terms ofJupiter have the periodiity pertaining to its own orbit and therefore will not be in resonane aswas the ase with the Earth, so we do not expet the e�et to aumulate in the �rst few years,when the perturbations are small. Note that these results are valid so long as we an neglet thenonlinearities arising from higher order terms in ǫ and α.We have then used the results of the �exing of LISA's arms to ompute the residuallaser frequeny noise in important TDI variables, namely, the Sagna, the Mihelson and theSymmetri Sagna. Our results are obtained to the �rst order in L̇ dropping terms of degree/orderequal to or higher than L̇2 and L̈. We have ompared the residual noises with the orrespondingseondary noises. We �nd that the residual laser noise in all these variables tends not to bevery high. In the Sagna variables it is negligible, in the Mihelson variables it is less than 20%,while in ζ variables only at the low frequeny end the residual noise beomes omparable tothe seondary noises. If this is aeptable then the modi�ed �rst generation TDI observablesould as well be used along with our model of LISA. Seond generation TDI variables generallyinvolving higher degree polynomials may not be then required.Our model of LISA is optimal (minimal �exing of arms) only in the Sun's �eld. Clearly thisopens up the question of seeking an optimal model for the LISA on�guration in the �eld of theSun, Earth, Jupiter and other planets whih will minimise the �exing of the arms and thereforethe residual laser frequeny noise in the modi�ed �rst generation TDI.We �nally remark that our omputations here may be useful in the development of a LISAsimulator. This is beause our omputation of the optial links have been arried out within afully general relativisti framework and we have taken into aount the gravitational �eld of theEarth. Also any disrepany observed between atual data and the model may suggest physialauses whih would be of interest and therefore would have to be inorporated into the dataanalysis.
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