48 research outputs found

    Vizhinjam international seaport emgerging transshipment hub port in Indian sub content

    Get PDF

    Towards Continuous Acoustic Tactile Soft Sensing

    Get PDF
    Acoustic Soft Tactile (AST) skin is a novel sensing technology that uses deformations of the acoustic channels beneath the sensing surface to predict static normal forces and their contact locations. AST skin functions by sensing the changes in the modulation of the acoustic waves travelling through the channels as they deform due to the forces acting on the skin surface. Our previous study tested different AST skin designs for three discrete sensing points and selected two designs that better predicted the forces and contact locations. This paper presents a study of the sensing capability of these two AST skin designs with continuous sensing points with a spatial resolution of 6 mm. Our findings indicate that the AST skin with a dual-channel geometry outperformed the single-channel type during calibration. The dual-channel design predicted more than 90% of the forces within a ± 3 N tolerance and was 84.2% accurate in predicting contact locations with ± 6 mm resolution. In addition, the dual-channel AST skin demonstrated superior performance in a real-time pushing experiment over an off-the-shelf soft tactile sensor. These results demonstrate the potential of using AST skin technology for real-time force sensing in various applications, such as human-robot interaction and medical diagnosis

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Biomechanical evaluation of human and porcine Auricular cartilage

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112214/1/lary25040.pd

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Enhancing low-cost cellular IoT networks on the sidelink and satellite links

    No full text
    Internet-of-Things (IoT) is one of the fast growing technologies in the current era which holds a large and rapidly increasing global market size. Device-to-device (D2D) communication is a key enabler for connecting devices together to form the IoT, especially when the cellular coverage is limited. Similarly, non-terrestrial networks (NTNs) involving satellites which complement the terrestrial cellular networks to provide global coverage also play a vital role in expanding IoT. Both D2D and satellite links are essential in providing seamless universal cellular IoT (C-IoT) coverage. In this thesis, we propose enhancements for C-IoT devices which address up-to-date problems in D2D communication and NTNs. Leveraging the unlicensed frequency bands for D2D communication reduces the costs, and offloads network traffic from the licensed spectral resources. To this end, we design a new low-cost radio access technology (RAT) protocol called Sidelink Communications on Unlicensed BAnds (SCUBA). SCUBA complements the primary RAT, and functions by reusing the existing hardware on a non-overlapping time-sharing basis. We prove the effectiveness of our protocol with analyses and simulation results of the medium access control layer of SCUBA. One of the most critical problems faced by NTN is the uplink (UL) synchronization failure due to high Doppler offset. While NTN new radio (NR) devices rely on global navigation satellite system (GNSS) to resolve this issue, it is not always feasible for power-critical IoT user equipments (UEs). Therefore, we design Synchronization signal-based Positioning in IoT Non-terrestrial networks (SPIN) which enables the IoT UEs to tackle the UL synchronization problem. Our evaluations show that SPIN positioning accuracy achieves the Cramer-Rao lower bound and meets the target accuracy required for UL synchronization, along with significant battery life savings over GNSS-based solution. Another pertinent problem faced by C-IoT devices in NTN is the extended round-trip time resulting in a degraded network throughput. To this end, we propose smarter hybrid automatic repeat request (HARQ) scheduling methods that can increase the efficiency of resource utilization. We conduct end-to-end link-level simulations of C-IoT traffic over NTNs. Our numerical results of data rate show the improvement in performance achieved using our proposed solutions against legacy scheduling methods.Applied Science, Faculty ofElectrical and Computer Engineering, Department ofGraduat

    Prepapillary vascular loops – A new classification

    No full text
    Background: Prepapillary vascular loops are a type of congenital vascular anomaly seen on or around the optic disk. Patients with this condition are usually asymptomatic and are detected incidentally on routine fundus examinations. Differential diagnosis for this condition includes neovascularization of the disk and collaterals on the disk. Prepapillary capillary loops are not associated with any systemic condition. They are usually unilateral in presentation, but can rarely be bilateral. Purpose: To discuss the new proposed classification of prepapillary capillary loops. Synopsis: Prepapillary capillary loops are classified based on their location around the disk, loop characteristics such as elevation, shape, and covering, and presence of vitreoretinal traction. Highlights: The most common vascular loops are arterial in origin and rarely venous in origin. They can sometimes be associated with spontaneous and recurrent vitreous hemorrhage, branch retinal artery or vein occlusion, and subretinal hemorrhage. It is an important differential diagnosis in spontaneous vitreous hemorrhage. Treatment is symptomatic. Video link: https://youtu.be/gbq_oP7Y2q
    corecore