6 research outputs found

    Optimization of Nasal Liposome Formulation of Venlafaxine Hydrochloride using a Box-Behnken Experimental Design

    No full text
    ABSTRACT: Background: Intranasal administration is among the most effective alternatives to deliver drugs directly to the brain and prevent first-pass metabolism. Venlafaxine-loaded liposomes are biocompatible carriers that enhance transport qualities over the nasal mucosa. Objective: This research aimed to develop, formulate, characterize, and observe the prepared formulation. Methods: The formulation was developed using the thin-film hydration technique. The response surface plot interrelationship between three independent variables are lipid, cholesterol and polymer and four dependent variables such as particle size, percentage entrapment efficiency, and percentage drug release were ascertained using the Box-Behnken design. Results: The drug-release chitosan-coated liposomes were reported to have a particle size distribution, entanglement efficiency, and 84%, respectively, of 191 ± 34.71 nm, 94 ± 2.71% and 94 ± 2.71%. According to in vitro investigations, liposomes as a delivery system for the nasal route provided a more sustained drug release than the oral dosing form. Conclusions: The intranasal administration of venlafaxine liposomal vesicles effectively enhanced the absolute bioavailability, retention time, and brain delivery of venlafaxine

    Lipid-Polymer Hybrid Nanoparticles for Topical Drug Delivery System

    No full text
    Human skin not only functions as a permeation barrier (mainly due to the stratum corneum layer), but also provides a unique delivery pathway for therapeutic and other active agents. These compounds penetrate via intercellular, intracellular and transappendageal routes, resulting in topical delivery (into skin strata) and transdermal delivery (to subcutaneous tissues and into the systemic circulation). Lipid–polymer hybrid nanoparticles (LPHNPs) are next-generation core–shell nanostructures, conceptually derived from both liposome and polymeric nanoparticles (NPs), where a polymer core remains enveloped by a lipid layer. Although they have garnered significant interest, they remain not yet widely exploited or ubiquitous. Recently, a fundamental transformation has occurred in the preparation of LPHNPs, characterized by a transition from a two-step to a one-step strategy, involving synchronous self-assembly of polymers and lipids. Owing to its two-in-one structure, this approach is of particular interest as a combinatorial drug delivery platform in oncology. In particular, the outer surface can be decorated in multifarious ways for active targeting of anticancer therapy, delivery of DNA or RNA materials, and use as a diagnostic imaging agent. Keywords: Lipid–polymer hybrid nanoparticle, Topical delivery, Drug delivery, Gene delivery

    Ocular Drug Delivery System: Barrier for Drug Permeation, Method to Overcome Barrier

    No full text
    The physiological and anatomical barriers are major obstacles in the field of ocular drug delivery systems. The barriers involve nasolacrimal drainage, blinking, cornea, sclera, and blood-aqueous barriers whereas dynamic barriers involve conjunctival blood flow, lymphatic clearance and tear drainage. These barriers are showing natural protective functions, as well as limiting drug entry into the eye. Nanocarriers have been found to be effective at overcoming the problems and associated with conventional ophthalmic dosage forms. In this chapter emphasizes overcome to barriers and discusses advanced novel techniques used in the field of ocular drug delivery systems including nano dispersion systems, nanomicelles, lipidic nanocarriers, polymeric nanoparticles, liposomes, noisome, and dendrimer, have been investigated for improved permeation and effective targeted drug delivery to various ophthalmic site

    Design and Evaluation of an Oral Floating Matrix Tablet of Salbutamol Sulphate

    No full text
    Purpose: To develop floating matrix tablets of salbutamol sulphate using ethyl cellulose and acrycoat S-100 as polymers, and sodium bicarbonate, citric acid and tartaric acid as gas generating agents. Methods: Twenty four formulations were prepared and segregated into four major categories, A to D. The floating tablets were prepared by wet granulation technique, and the granules were compressed at a pressure of 50 kg/cm2. The tablets contained drug, ethyl cellulose and Acrycoat S-100 (as releaseretarding polymers), sodium bicarbonate, citric acid and tartaric acid (as gas formers) as well as various additives. The tablets were made by wet granulation technique. The formulations were evaluated for in vitro buoyancy, dissolution and in vitro drug release. Results: All the formulations fulfilled the essential requirements for good floating systems. Formulation F8, containing citric acid and sodium bicarbonate, showed lower lag time and longer floating duration than the formulations containing only sodium bicarbonate. Formulation F8.2 (which contained citric and tartaric acid at a ratio of 1:1) showed longer floating duration (9 h) than F8. As the concentration of sodium bicarbonate increased in formulation F8.2, drug release decreased while floating duration increased. Conclusion: Of all the 24 formulations, the one containing tartaric acid and citric acid in ratio 1:3 and 12 mg sodium bicarbonate showed the highest floating duration and least lag time

    Hesperidin-Loaded Lipid Polymer Hybrid Nanoparticles for Topical Delivery of Bioactive Drugs

    No full text
    Hesperidin is a bioflavonoid constituent that among many other biological activities shows significant wound healing properties. However, the bioavailability of hesperidin when applied topically is limited due to its low solubility and systemic absorption, so novel dosage forms are needed to improve its therapeutic efficacy. The objectives of this study were to develop hesperidin-loaded lipid-polymer hybrid nanoparticles (HLPHNs) to enhance the delivery of hesperidin to endogenous sites in the wound bed and promote the efficacy of hesperidin. HLPHNs were optimized by response surface methodology (RSM) using the Box-Behnken design. HLPHNs were prepared using an emulsion-solvent evaporation method based on a double emulsion of water-in-oil-in-water (w/o/w) followed by freeze-drying to obtain nanoparticles. The prepared formulations were characterized using various evaluation parameters. In addition, the antioxidant activity of HLPHN 4 was investigated in vitro using the DPPH model. Seventeen different HLPHNs were prepared and the HLPHN4 exhibited the best mean particle size distribution, zeta potential, drug release and entrapment efficiency. The values are 91.43 nm, +23 mV, 79.97% and 92.8%, respectively. Transmission electron microscope showed similar spherical morphology as HLPHN4. Differential scanning calorimetry verified the physical stability of the loaded drug in a hybrid system. In vitro release studies showed uniform release of the drug over 24 h. HLPHN4 showed potent antioxidant activity in vitro in the DPPH model. The results of this study suggest that HLPHNs can achieve sustained release of the drug at the wound site and exhibit potent in vitro antioxidant activity
    corecore