15 research outputs found

    Heat Transfer Performance of Different Fluids During Natural Convection in Enclosures with Varying Aspect Ratios

    No full text
    The heat transfer process takes place in numerous applications through the natural convection of fluids. Investigations of the natural convection heat transfer in enclosures have gained vital importance in the last decade for the improvement in thermal performance and design of the heating/cooling systems. Aspect ratios (AR=height/length) of the enclosures are one of the crucial factors during the natural convection heat transfer process. The investigated fluids consisting of air, water, engine oil, mercury, and glycerine have numerous engineering applications. Heat transfer and fluid flow characteristics are studied in 3-dimensional rectangular enclosures with varying aspect ratios (0.125 to 150) using computational fluid dynamics (CFD) simulations. Studies are carried out using the five different fluids having Prandtl number range 0.01 to 4500 in rectangular enclosures with the hot and cold surface with varying temperature difference 20K to 100K. The Nusselt number and heat transfer coefficients are estimated at all conditions to understand the dependency of ARs on the heat transfer performance of selected fluids. Temperature and velocity profiles are compared to study the flow pattern of different fluids during natural convection. The Nusselt number correlations are developed in terms of aspect ratio and Rayleigh number to signify the natural convection heat transfer performance

    Rheological profile of graphene-based nanofluids in thermal oil with hybrid additives of carbon nanotubes and nanofibers

    No full text
    International audienceThe evolution in nanofluid technology in the last few decades has proved the prodigious potential in several applications, especially thermal management and lubrication. An extensive investigation of nanofluid's rheological profile is vital to characterize the fluid flow behavior. This study signifies the rheological aspects of graphene and its hybrid nano-dispersions in thermal oil. The experimental investigation involves three sets of nanofluids containing graphene, graphene-carbon nanotubes, and graphene-carbon nanofiber hybrid nanofluid dispersions in thermal oil with varying loadings (0–2 mass%). The flow behaviors of all sets of nanofluids are measured at a wide shear range of 1–2000 s−1 and five different temperatures from 298 K to 338 K. The morphology and stability are validated by performing several characterizations for nanomaterials and nanofluids. Non-Newtonian fluid behavior is observed in all nanofluids. This study reveals a few interesting outcomes where the fluid behaving as a Power Law model is shifted to the Herschel-Bulkley model at high loadings of nanomaterials. A comparative analysis illustrates that both hybrid additives act as viscosity reducers for graphene-based nanofluids, where graphene-carbon nanofibers hybrid nanofluids exhibit noticeable reduction. A parametric analysis is performed on the viscous behavior involving the impact of shear rate, temperature, nanomaterial loading, and surfactant concentration. The increment in viscosity shoots up to 180 % for graphene-nanofluid at the 2000 s−1 shear rate and 338 K temperature, but still exhibits shear thinning phenomena. A correlation is also proposed for the nanofluid viscosity in terms of nanomaterial loading and temperature, indicating a good agreement at varying shear rates

    Produced Water Treatment with Conventional Adsorbents and MOF as an Alternative: A Review

    No full text
    A large volume of produced water (PW) has been produced as a result of extensive industrialization and rising energy demands. PW comprises organic and inorganic pollutants, such as oil, heavy metals, aliphatic hydrocarbons, and radioactive materials. The increase in PW volume globally may result in irreversible environmental damage due to the pollutants’ complex nature. Several conventional treatment methods, including physical, chemical, and biological methods, are available for produced water treatment that can reduce the environmental damages. Studies have shown that adsorption is a useful technique for PW treatment and may be more effective than conventional techniques. However, the application of adsorption when treating PW is not well recorded. In the current review, the removal efficiencies of adsorbents in PW treatment are critically analyzed. An overview is provided on the merits and demerits of the adsorption techniques, focusing on overall water composition, regulatory discharge limits, and the hazardous effects of the pollutants. Moreover, this review highlights a potential alternative to conventional technologies, namely, porous adsorbent materials known as metal–organic frameworks (MOFs), demonstrating their significance and efficiency in removing contaminants. This study suggests ways to overcome the existing limitations of conventional adsorbents, which include low surface area and issues with reuse and regeneration. Moreover, it is concluded that there is a need to develop highly porous, efficient, eco-friendly, cost-effective, mechanically stable, and sustainable MOF hybrids for produced water treatment
    corecore