12 research outputs found

    Regulation of hmp Gene Transcription in Mycobacterium tuberculosis: Effects of Oxygen Limitation and Nitrosative and Oxidative Stress

    No full text
    The Mycobacterium tuberculosis hmp gene encodes a protein which is homologous to flavohemoglobin in Escherichia coli. Northern blotting analysis demonstrated that hmp transcription increased when a microaerophilic culture became oxygen limited as it entered stationary phase at 20 days. There was a fivefold increase of the hmp transcripts during early stationary phase compared with the value which was observed in the exponential growth phase. This induction of hmp transcription was not due to changes in the mRNA stability since the half-life of hmp mRNA was very short in a 20-day microaerophilic culture. No induction of hmp mRNA was observed during entry into stationary phase when the culture was continuously aerated. hmp transcription was induced after a short exposure of a late-exponential-phase culture to anaerobic conditions. These data indicate that oxygen limitation is the trigger for hmp gene transcription. In addition, when a microaerophilic culture entered into the stationary phase at 20 days, transcription of hmp increased to a small extent after exposure to S-nitrosoglutathione (a nitric oxide [NO] releaser) and sodium nitroprusside (an NO(+) donor) and decreased after exposure to paraquat (a superoxide generator) and H(2)O(2). In log phase (4 days) and late stationary phase (40 days), the transcription of hmp was unaffected by nitrosative and oxidative stress. Three primer extension products were observed. The −10 region is 100% identical to that of promoter T3 in mycobacteria and shows a strong similarity to the −10 sequence of hmp and rpoS promoters in E. coli. These observations of hmp mRNA induction in response to O(2) limitation and nitrosative stress suggest that the hmp gene of M. tuberculosis may have a role in protection of the organism from NO killing under microaerophilic conditions

    Insight into the genome of Aspergillus fumigatus: analysis of a 922 kb region encompassing the nitrate assimilation gene cluster.

    No full text
    Aspergillus fumigatus is the most ubiquitous opportunistic filamentous fungal pathogen of human. As an initial step toward sequencing the entire genome of A. fumigatus, which is estimated to be approximately 30 Mb in size, we have sequenced a 922 kb region, contained within 16 overlapping bacterial artificial chromosome (BAC) clones. Fifty-four percent of the DNA is predicted to be coding with 341 putative protein coding genes. Functional classification of the proteins showed the presence of a higher proportion of enzymes and membrane transporters when compared to those of Saccharomyces cerevisiae. In addition to the nitrate assimilation gene cluster, the quinate utilisation gene cluster is also present on this 922 kb genomic sequence. We observed large scale synteny between A. fumigatus and Aspergillus nidulans by comparing this sequence to the A. nidulans genetic map of linkage group VIII

    Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans

    No full text
    Candida dubliniensis is the closest known relative of Candida albicans, the most pathogenic yeast species in humans. However, despite both species sharing many phenotypic characteristics, including the ability to form true hyphae, C. dubliniensis is a significantly less virulent and less versatile pathogen. Therefore, to identify C. albicans-specific genes that may be responsible for an increased capacity to cause disease, we have sequenced the C. dubliniensis genome and compared it with the known C. albicans genome sequence. Although the two genome sequences are highly similar and synteny is conserved throughout, 168 species-specific genes are identified, including some encoding known hyphal-specific virulence factors, such as the aspartyl proteinases Sap4 and Sap5 and the proposed invasin Als3. Among the 115 pseudogenes confirmed in C. dubliniensis are orthologs of several filamentous growth regulator (FGR) genes that also have suspected roles in pathogenesis. However, the principal differences in genomic repertoire concern expansion of the TLO gene family of putative transcription factors and the IFA family of putative transmembrane proteins in C. albicans, which represent novel candidate virulence-associated factors. The results suggest that the recent evolutionary histories of C. albicans and C. dubliniensis are quite different. While gene families instrumental in pathogenesis have been elaborated in C. albicans, C. dubliniensis has lost genomic capacity and key pathogenic functions. This could explain why C. albicans is a more potent pathogen in humans than C. dubliniensis

    Common inheritance of chromosome Ia associated with clonal expansion of Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is a globally distributed protozoan parasite that can infect virtually all warm-blooded animals and humans. Despite the existence of a sexual phase in the life cycle, T. gondii has an unusual population structure dominated by three clonal lineages that predominate in North America and Europe, (Types I, II, and III). These lineages were founded by common ancestors ~10,000 yr ago. The recent origin and widespread distribution of the clonal lineages is attributed to the circumvention of the sexual cycle by a new mode of transmission—asexual transmission between intermediate hosts. Asexual transmission appears to be multigenic and although the specific genes mediating this trait are unknown, it is predicted that all members of the clonal lineages should share the same alleles. Genetic mapping studies suggested that chromosome Ia was unusually monomorphic compared with the rest of the genome. To investigate this further, we sequenced chromosome Ia and chromosome Ib in the Type I strain, RH, and the Type II strain, ME49. Comparative genome analyses of the two chromosomal sequences revealed that the same copy of chromosome Ia was inherited in each lineage, whereas chromosome Ib maintained the same high frequency of between-strain polymorphism as the rest of the genome. Sampling of chromosome Ia sequence in seven additional representative strains from the three clonal lineages supports a monomorphic inheritance, which is unique within the genome. Taken together, our observations implicate a specific combination of alleles on chromosome Ia in the recent origin and widespread success of the clonal lineages of T. gondii

    The genome of the simian and human malaria parasite Plasmodium knowlesi

    No full text
    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the ‘kra’ monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia1,2. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated3, and it has a close phylogenetic relationship to Plasmodium vivax4, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or ‘hypnozoite’ in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone5) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome4 and other sequenced Plasmodium genomes6,7,8. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs9, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.ISSN:0028-0836ISSN:1476-468

    Comparative genomic analysis of three Leishmania species that cause diverse human disease

    No full text
    Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage

    The genome of the African trypanosome Trypanosoma brucei

    No full text
    African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of <i>Trypanosoma brucei</i>. The 26-megabase genome contains 9068 predicted genes, including ~900 pseudogenes and ~1700 <i>T. brucei</i>–specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of <i>T. brucei</i>, <i>T. cruzi</i>, and <i>Leishmania major</i> reveals the least overall metabolic capability in <i>T. brucei</i> and the greatest in <i>L. major</i>. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified

    The genome of the kinetoplastid parasite, Leishmania major

    Get PDF
    Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II–directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gen

    Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus

    Full text link
    corecore