28 research outputs found

    Analysis of Large Civil Tilt Rotor Wind Tunnel Blockage and Validation Using RotCFD

    Get PDF
    Ground based experiments are often used to understand and measure rotor and airframe aerodynamic performance; however, these experiments have certain limitations. The effects of these limitations are evaluated here using computational fluid dynamic (CFD) modeling techniques. Through this study, data from the 7- by 10-Foot Wind Tunnel experiments of the Large Civil Tilt Rotor (LCTR) at NASA Ames Research Center is validated using CFD. The Reynolds Averages Navier-Stokes solver, RotCFD, is used for the computations. In particular, the effect of the blockage generated by the test hardware on the walls is investigated. To study this problem, simplified geometries such as a flat plate, cube and cylinder are also investigated for blockage effects. This is done to explore if these different geometries can represent the LCTR as a simplified case to reduce computational time and get a quick first understanding of tunnel blockage effects. The focus of this research is to understand the limitations and accuracy of the recent small-scale Large Civil Tilt Rotor wind tunnel test campaigns

    Extraction of Dynamic Inflow Models for Coaxial and Tandem Rotors from CFD Simulations

    Get PDF
    The dynamic inflow coupling with rotor/body dynamics is crucial in the analysis of stability and control law design for helicopters. Over the past several decades, finite-state inflow models for single rotor configurations in hover, forward flight, and maneuver have developed (Ref.1-3). By capturing the interference effects between rotors, the extension of pressure potential finite state inflow model has promising result for coaxial rotor configuration (Ref.4-6). Recently, the focus of the dynamic inflow modeling has shifted to tandem rotor configurations (Ref.7, 8). The development of the dynamic inflow models for tandem rotor configuration still have some limitations due to the lack of knowledge of rotor-to-rotor interference, and rotor-wake interference. Experimental methods, and computational fluid dynamics methods are commonly used to understand the rotor performance and rotor airload variations, and measure or predict inflow velocity distributions at the rotor desk. The inflow distributions are subsequently used to improve the dynamic inflow models. Tandem rotor configurations have been studied experimentally and computationally for several decades (Ref.9-12). Sweet (Ref.10) observed that a tandem rotor with 76-percent-radius overlap required 14% more induced power at hovering condition, relative to an isolated rotor of equivalent disk area. Sweet also found that, above a shaft-to-shaft distance of 1.03 diameter, the performance of the tandem rotor was nearly the same as two isolated rotors. The objective of the present study is to apply computational fluid dynamics simulations of tandem rotors for the extraction of dynamic inflow models. The extended methodology is first validated by comparing the computed induced power against test data. Subsequently inflow distributions and wake structures are analyzed

    A phase-I trial of pre-operative, margin intensive, stereotactic body radiation therapy for pancreatic cancer: the 'SPARC' trial protocol.

    Get PDF
    BACKGROUND: Standard therapy for borderline-resectable pancreatic cancer in the UK is surgery with adjuvant chemotherapy, but rates of resection with clear margins are unsatisfactory and overall survival remains poor. Meta-analysis of single-arm studies shows the potential of neo-adjuvant chemo-radiotherapy but the relative radio-resistance of pancreatic cancer means the efficacy of conventional dose schedules is limited. Stereotactic radiotherapy achieves sufficient accuracy and precision to enable pre-operative margin-intensive dose escalation with the goal of increasing rates of clear resection margins and local disease control. METHODS/DESIGN: SPARC is a "rolling-six" design single-arm study to establish the maximum tolerated dose for margin-intensive stereotactic radiotherapy before resection of pancreatic cancer at high risk of positive resection margins. Eligible patients will have histologically or cytologically proven pancreatic cancer defined as borderline-resectable per National Comprehensive Cancer Network criteria or operable tumour in contact with vessels increasing the risk of positive margin. Up to 24 patients will be recruited from up to 5 treating centres and a 'rolling-six' design is utilised to minimise delays and facilitate ongoing recruitment during dose-escalation. Radiotherapy will be delivered in 5 daily fractions and surgery, if appropriate, will take place 5-6 weeks after radiotherapy. The margin-intense radiotherapy concept includes a systematic method to define the target volume for a simultaneous integrated boost in the region of tumour-vessel infiltration, and up to 4 radiotherapy dose levels will be investigated. Maximum tolerated dose is defined as the highest dose at which no more than 1 of 6 patients or 0 of 3 patients experience a dose limiting toxicity. Secondary endpoints include resection rate, resection margin status, response rate, overall survival and progression free survival at 12 and 24 months. Translational work will involve exploratory analyses of the cytological and humoral immunological responses to stereotactic radiotherapy in pancreatic cancer. Radiotherapy quality assurance of target definition and radiotherapy planning is enforced with pre-trial test cases and on-trial review. Recruitment began in April 2015. DISCUSSION: This prospective multi-centre study aims to establish the maximum tolerated dose of pre-operative margin-intensified stereotactic radiotherapy in pancreatic cancer at high risk of positive resection margins with a view to subsequent definitive comparison with other neoadjuvant treatment options

    Loci influencing blood pressure identified using a cardiovascular gene-centric array

    Get PDF
    Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.</p

    NASA/CR-1999-208973 A UserÕs Manual for ROTTILT Solver: Tiltrotor Fountain Flow Field Prediction

    No full text
    Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role. The NASA STI Program Office is operated by Langley Research Center, the lead center for NASAÕs scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASAÕs institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types: · TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations. · TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis

    A new mixed basis Navier–Stokes formulation for incompressible flows over complex geometries

    No full text
    Numerical modeling of complex geometries necessitates the use of curvilinear body fitted coordinates. This article proposes a novel mixed basis formulation of the governing conservation equations for general curvilinear non-orthogonal grids with the physical covariant velocity as the primary solution variable. This results in an algorithm which has many advantages of orthogonal equations. The conservation equations written in this form retains the diagonal dominance of the pressure equation. The newly formed conservation equations are solved on a structured grid using the SIMPLER algorithm and are shown to converge well for non-orthogonal grids. Standard K–ϵ model is used for the turbulence closure.NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Computational Physics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computational Physics, 307, February 15 (2016), doi: 10.1016/j.jcp.2015.11.065.</p
    corecore