94 research outputs found

    A proof-theoretic trust and reputation model for VANET

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are an important component of intelligent transportation systems, which are set to become part of global transportation infrastructure in the near future. In the context of such networks, security requirements need to rely on a combination of reputation of communicating agents and trust relations over the messaging framework. This is crucial in order to maintain dynamic and safe behaviour under all circumstances. Formal correctness, resolution of contradictions and proven safety of transitive operations in the presence of reputation and trust within the infrastructure remain mostly unexplored issues. This could lead to potentially disastrous situations, putting lives at risk. In this paper we provide a proof-theoretic interpretation of a reputation and trust model for VANET. This allows for formal verification through translation into the Coq proof assistant, and can guarantee consistency of messaging protocols and security of transitive transmissions

    Virtual and Augmented Reality in Finance: State Visibility of Events and Risk

    Get PDF
    International audienceThe recent financial crisis and its aftermath motivate our re-thinking of the role of Information and Communication Technologies (ICT) as a driver for change in global finance and a critical factor for success and sustainability. We attribute the recent financial crisis that hit the global market, causing a drastic economic slowdown and recession, to a lack of state visibility of risk, inadequate response to events, and a slow dynamic system adaptation to events. There is evidence that ICT is not yet appropriately developed to create business value and business intelligence capable of counteracting devastating events. The aim of this chapter is to assess the potential of Virtual Reality and Augmented Reality (VR / AR) technologies in supporting the dynamics of global financial systems and in addressing the grand challenges posed by unexpected events and crises. We overview, firstly, in this chapter traditional AR/VR uses. Secondly, we describe early attempts to use 3D/ VR / AR technologies in Finance. Thirdly, we consider the case study of mediating the visibility of the financial state and we explore the various dimensions of the problem. Fourthly, we assess the potential of AR / VR technologies in raising the perception of the financial state (including financial risk). We conclude the chapter with a summary and a research agenda to develop technologies capable of increasing the perception of the financial state and risk and counteracting devastating events

    Automated equivalence checking of concurrent quantum systems

    Get PDF
    The novel field of quantum computation and quantum information has gathered significant momentum in the last few years. It has the potential to radically impact the future of information technology and in influence the development of modern society. The construction of practical, general purpose quantum computers has been challenging, but quantum cryptographic and communication devices have been available in the commercial marketplace for several years. Quantum networks have been built in various cities around the world and a dedicated satellite has been launched by China to provide secure quantum communication. Such new technologies demand rigorous analysis and verification before they can be trusted in safety- and security- critical applications. Experience with classical hardware and software systems has shown the difficulty of achieving robust and reliable implementations. We present CCSq, a concurrent language for describing quantum systems, and develop verification techniques for checking equivalence between CCSq processes. CCSq has well-defined operational and superoperator semantics for protocols that are functional, in the sense of computing a deterministic input-output relation for all interleavings arising from concurrency in the system. We have implemented QEC (Quantum Equivalence Checker), a tool which takes the specification and implementation of quantum protocols, described in CCSq, and automatically checks their equivalence. For efficiency purposes, we restrict ourselves to Clifford operators in the stabilizer formalism, but we are able to verify protocols over all input states. We have specified and verified a collection of interesting and practical quantum protocols ranging from quantum communication and quantum cryptography to quantum error correction
    • …
    corecore