93 research outputs found

    ANTI-ANEMIC ACTIVITY OF SPROUTS OF VIGNA RADIATA L. IN MALE ALBINO RATS

    Get PDF
    Objective: To evaluate the anti-anemic activity of sprouts of Vigna radiata L. against phenyl hydrazine induced anemic rats.Methods: Rats were divided into 4 groups of 6 each. Group 1 was given normal saline and served as control and all other groups were given 40 mg/kg b. w of phenyl hydrazine for 2 d to induce anemia. Group 3 was treated with Bioferon (230 mg/kg) and served as the standard. Group 4 was treated with sprouted Vigna radiata L. (600 mg/kg bw). All the treatments were given orally. On completion of the experimental period, all the test substance/vehicle-treated rats were sacrificed and the plasma separated was used for estimating various biochemical as well as hematological parameters as per standard procedures. Results: The experimental rats treated with sprouted Vigna radiata L. at the dose level 600 mg/kg bw for 13 d revealed significant changes in biochemical and hematological parameters compared to phenyl hydrazine induced anemic rats.Conclusion: The present study concluded that the sprouted Vigna radiata L. inhibits anemia induced by phenyl hydrazine in male albino rats. Â

    Anatomical studies on the leaf and stem of Tinospora formanii Udayan & Pradeep (Menispermaceae), an endemic species to Southern Western Ghats, Kerala, India

    Get PDF
    The anatomical studies on leaf and stem of T. formanii Udayan & Pradeep an endemic species to southern Western Ghats, Kerala, India was carried out focusing on its macroscopic, microscopic, maceration along with organoleptic evaluation. Distinguishing characters of the stem revealed the presence of calcium oxalate crystals, simple and compound starch grains and pitted lignified fibers. Leaf anatomy showed the anomocytic and paracytic stomata, pitted lignified fibers, spiral vessels, non-glandular small trichomes, C or half-moon shaped vascular bundle, surrounded with sclerenchymatous tissues and rosette and prism shaped calcium oxalate crystals. Whereas, maceration studies revealed the presence of spiral and scalar form vessel, fibers, calcium oxalate crystals, simple starch grains. These anatomical studies are vital in the present-day trade scenario not only helpful in the proper identification of the genuine materials in use but also to distinguish different species of Tinospora, where the stem and leaf are often admixed with other species of Tinospora in the crude drug markets

    3-(4-Methoxy­phen­yl)-6-(phenyl­sulfon­yl)perhydro-1,3-thiazolo[3′,4′:1,2]pyrrolo[4,5-c]pyrrole

    Get PDF
    In the title compound, C21H24N2O3S2, the three five-membered rings adopt envelope conformations. The dihedral angle between the two aromatic rings is 68.4 (1)°. C—H⋯O inter­actions link the mol­ecules into a chain and the chains are cross-linked via C—H⋯π inter­actions involving the meth­oxy­phenyl ring

    1′-Phenyl-6′-thia­cyclo­heptane-1-spiro-2′-perhydro­pyrrolizine-3′-spiro-3′′-indoline-2,2′′-dione

    Get PDF
    The thia­zolidine ring and the pyrrolidine ring in the title compound, C25H26N2O2S, both adopt an envelope conformation. The seven-membered ring has a twist-chair conformation. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds

    Evaluation of antihypercholesterolemic effect using Memecylon edule Roxb. ethanolic extract in cholesterol-induced Swiss albino mice

    Get PDF
    Purpose/Aim: In the present study, we investigate the antihypercholesterolemic effect of the ethanolic extract of Memecylon edule in in vivo. Methods: Cholesterol (1%) -induced experimental groups were treated with 100 mg/kg and 200 mg/kg M. edule ethanolic extract. The study period of antihypercholesterolemia, the mice body weight, lipid profile, serum enzymes (such as superoxide dismutase, catalase, and glutathione peroxidase), liver marker enzyme, and histopathological study of liver tissues were examined. Results: The M. edule-treated groups have exhibited significant changes in total cholesterol, very-low-density lipoprotein, and low-density lipoprotein, and eventually increased the high-density-lipoprotein activity in serum. Also, it reduced the malondialdehyde level and increased the antioxidant-enzyme activities. The activity is mainly the presence of flavonoids, tannins, saponins, and glycosides in the ethanolic extract of M. edule. Conclusion; The M. edule extract contains a different class of secondary metabolites, which reduces the hypercholesterolemic condition in the experimental animal model. The results explored the M. edule extract as a potent drug for hypercholesterolemic condition

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore