85 research outputs found

    Age‐dependent changes in infidelity in Seychelles warblers

    Get PDF
    Extra‐pair paternity (EPP) is often linked to male age in socially monogamous vertebrates; that is, older males are more likely to gain EPP and less likely to be cuckolded. However, whether this occurs because males improve at gaining paternity as they grow older, or because “higher quality” males that live longer are preferred by females, has rarely been tested, despite being central to our understanding of the evolutionary drivers of female infidelity. Moreover, how extra‐pair reproduction changes with age within females has received even less attention. Using 18 years of longitudinal data from an individually marked population of Seychelles warblers (Acrocephalus sechellensis), we found considerable within‐individual changes in extra‐pair reproduction in both sexes: an early‐life increase and a late‐life decline. Furthermore, males were cuckolded less as they aged. Our results indicate that in this species age‐related patterns of extra‐pair reproduction are determined by within‐individual changes with age, rather than differences among individuals in longevity. These results challenge the hypothesis—based on longevity reflecting intrinsic quality—that the association between male age and EPP is due to females seeking high‐quality paternal genes for offspring. Importantly, EPP accounted for up to half of male reproductive success, emphasizing the male fitness benefits of this reproductive strategy. Finally, the occurrence of post‐peak declines in extra‐pair reproduction provides explicit evidence of senescence in infidelity in both males and females

    Productivity, seed quality and nutrient use efficiency of wheat (Triticum aestivum) under organic, inorganic and integrated nutrient management practices after twenty years of fertilization

    Get PDF
    A long-term field experiment started in 1995 on Research Farm of Department of Soil Science, CCS Haryana Agricultural University Hisar (India) was selected to study the effects of organic manures and chemical fertilizers on productivity, seed quality and nutrient use efficiency of wheat under pearl millet-wheat cropping system. The organic manures (15 Mg FYM, 5 Mg poultry manure and 7.5 Mg pressmud) were applied alone and in combination with fertilizers (150 kg N + 30 kg P2O5 ha−1) and compared with chemical fertilizers applied alone (150 kg N + 60 kg P2O5 ha−1 and 75 kg N + 30 kg P2O5 ha−1). The results showed that the application of organic manures in combination with N and P fertilizers significantly increased all yield attributes, i.e. plant height, number of tillers/m row length, spike length, number of grains/spike. Higher grain yield of wheat (61.4, 57.4 and 62.7 q ha−1) was observed when recommended dose of N and half of P was applied in conjunction with FYM, poultry manure and pressmud, respectively. Grain yield of wheat increased by 13.5, 6.1 and 15.9%, respectively, under same treatments when compared with recommended dose of N and P fertilizers. Among the organic manures, highest yield (32.9 q ha−1) was obtained with pressmud application. However, application of organic manures alone resulted in poor yield and even lower than 50% recommended dose of N and P fertilizer. All the seed quality parameters (standard germination, shoot length, root length, seedling dry weight, seedling vigour index-I and -II) improved with the combined application of organic manures and chemical fertilizers as compared to their individual application. The partial factor productivity of N and P increased with combined application organic manures and chemical fertilizer as compared to chemical fertilizers applied alone, however, nutrient harvest index and their utilization efficiency decreased with combined application of organic manures and fertilizers as compared to their individual application

    Socio-ecological conditions and female infidelity in the Seychelles warbler

    Get PDF
    Within socially monogamous breeding systems, levels of extra-pair paternity can vary not only between species, populations, and individuals, but also across time. Uncovering how different extrinsic conditions (ecological, demographic, and social) influence this behavior will help shed light on the factors driving its evolution. Here, we simultaneously address multiple socio-ecological conditions potentially influencing female infidelity in a natural population of the cooperatively breeding Seychelles warbler, Acrocephalus sechellensis. Our contained study population has been monitored for more than 25 years, enabling us to capture variation in socio-ecological conditions between individuals and across time and to accurately assign parentage. We test hypotheses predicting the influence of territory quality, breeding density and synchrony, group size and composition (number and sex of subordinates), and inbreeding avoidance on female infidelity. We find that a larger group size promotes the likelihood of extra-pair paternity in offspring from both dominant and subordinate females, but this paternity is almost always gained by dominant males from outside the group (not by subordinate males within the group). Higher relatedness between a mother and the dominant male in her group also results in more extra-pair paternity—but only for subordinate females—and this does not prevent inbreeding occurring in this population. Our findings highlight the role of social conditions favoring infidelity and contribute toward understanding the evolution of this enigmatic behavior

    The contribution of extra‐pair paternity to the variation in lifetime and age‐specific male reproductive success in a socially monogamous species

    Get PDF
    In socially monogamous species, extra-pair paternity (EPP) is predicted to increase variance in male reproductive success (RS) beyond that resulting from genetic monogamy, thus, increasing the “opportunity for selection” (maximum strength of selection that can act on traits). This prediction is challenging to investigate in wild populations because lifetime reproduction data are often incomplete. Moreover, age-specific variances in reproduction have been rarely quantified. We analyzed 21 years of near-complete social and genetic reproduction data from an insular population of Seychelles warblers (Acrocephalus sechellensis). We quantified EPP's contribution to lifetime and age-specific opportunities for selection in males. We compared the variance in male genetic RS versus social (“apparent”) RS (RSap) to assess if EPP increased the opportunity for selection over that resulting from genetic monogamy. Despite not causing a statistically significant excess (19%) of the former over the latter, EPP contributed substantially (27%) to the variance in lifetime RS, similarly to within-pair paternity (WPP, 39%) and to the positive WPP-EPP covariance (34%). Partitioning the opportunity for selection into age-specific (co)variance components, showed that EPP also provided a substantial contribution at most ages, varying with age. Therefore, despite possibly not playing the main role in shaping sexual selection in Seychelles warblers, EPP provided a substantial contribution to the lifetime and age-specific opportunity for selection, which can influence evolutionary processes in age-structured populations

    Structural equation modeling reveals determinants of fitness in a cooperatively breeding bird

    Get PDF
    Even in well-studied organisms, it is often challenging to uncover the social and environmental determinants of fitness. Typically, fitness is determined by a variety of factors that act in concert, thus forming complex networks of causal relationships. Moreover, even strong correlations between social and environmental conditions and fitness components may not be indicative of direct causal links, as the measured variables may be driven by unmeasured (or unmeasurable) causal factors. Standard statistical approaches, like multiple regression analyses, are not suited for disentangling such complex causal relationships. Here, we apply structural equation modeling (SEM), a technique that is specifically designed to reveal causal relationships between variables, and which also allows to include hypothetical causal factors. Therefore, SEM seems ideally suited for comparing alternative hypotheses on how fitness differences arise from differences in social and environmental factors. We apply SEM to a rich data set collected in a long-term study on the Seychelles warbler (Acrocephalus sechellensis), a bird species with facultatively cooperative breeding and a high rate of extra-group paternity. Our analysis reveals that the presence of helpers has a positive effect on the reproductive output of both female and male breeders. In contrast, per capita food availability does not affect reproductive output. Our analysis does not confirm earlier suggestions on other species that the presence of helpers has a negative effect on the reproductive output of male breeders. As such, both female and male breeders should tolerate helpers in their territories, irrespective of food availability

    Structural equation modeling reveals determinants of fitness in a cooperatively breeding bird

    Get PDF
    Even in well-studied organisms, it is often challenging to uncover the social and environmental determinants of fitness. Typically, fitness is determined by a variety of factors that act in concert, thus forming complex networks of causal relationships. Moreover, even strong correlations between social and environmental conditions and fitness components may not be indicative of direct causal links, as the measured variables may be driven by unmeasured (or unmeasurable) causal factors. Standard statistical approaches, like multiple regression analyses, are not suited for disentangling such complex causal relationships. Here, we apply structural equation modeling (SEM), a technique that is specifically designed to reveal causal relationships between variables, and which also allows to include hypothetical causal factors. Therefore, SEM seems ideally suited for comparing alternative hypotheses on how fitness differences arise from differences in social and environmental factors. We apply SEM to a rich data set collected in a long-term study on the Seychelles warbler (Acrocephalus sechellensis), a bird species with facultatively cooperative breeding and a high rate of extra-group paternity. Our analysis reveals that the presence of helpers has a positive effect on the reproductive output of both female and male breeders. In contrast, per capita food availability does not affect reproductive output. Our analysis does not confirm earlier suggestions on other species that the presence of helpers has a negative effect on the reproductive output of male breeders. As such, both female and male breeders should tolerate helpers in their territories, irrespective of food availability

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • 

    corecore