11 research outputs found

    Strain engineering for GeSn/SiGeSn multiple quantum well laser structures

    Get PDF
    Optically pumped GeSn laser have been realized, thus alloying of group IV elements germanium (Ge) and tin (Sn) has a large potential to be a solution for Si-photonics, since a direct bandgap for Sn incorporations above ~9 at.% is obtained [1]. The value of the bandgap can further be controlled by adding Si into the mix, which can be exploited for the formation of heterostructures for carrier confinement [2]. However, a sufficiently large difference in energy ΔE between the indirect L-valley and the direct Г-valley is required to achieve room temperature lasing. Recently lasing was reported at 180K in GeSn alloys with Sn concentrations as high as 22,3% [3]. Alternatively ΔE can be increased by adding tensile strain to the GeSn layers. Here we will discuss that an appropriate combination of Sn concentration and strain will be advantageous to tailor gain and temperature stability of the structures. Please click Additional Files below to see the full abstract

    (Si)GeSn nanostructures for light emitters

    Get PDF
    Energy-efficient integrated circuits for on-chip or chip-to-chip data transfer via photons could be tackled by monolithically grown group IV photonic devices. The major goal here is the realization of fully integrated group IV room temperature electrically driven lasers. An approach beyond the already demonstrated optically-pumped lasers would be the introduction of GeSn/(Si)Ge(Sn) heterostructures and exploitation of quantum mechanical effects by reducing the dimensionality, which affects the density of states. In this contribution we present epitaxial growth, processing and characterization of GeSn/(Si)Ge(Sn) heterostructures, ranging from GeSn/Ge multi quantum wells (MQWs) to GeSn quantum dots (QDs) embedded in a Ge matrix. Light emitting diodes (LEDs) were fabricated based on the MQW structure and structurally analyzed via TEM, XRD and RBS. Moreover, EL measurements were performed to investigate quantum confinement effects in the wells. The GeSn QDs were formed via Sn diffusion /segregation upon thermal annealing of GeSn single quantum wells (SQW) embedded in Ge layers. The evaluation of the experimental results is supported by band structure calculations of GeSn/(Si)Ge(Sn) heterostructures to investigate their applicability for photonic devices

    Direct bandgap GeSn light emitting diodes for short-wave infrared applications grown on Si

    Get PDF
    The experimental demonstration of fundamental direct bandgap, group IV GeSn alloys has constituted an important step towards realization of the last missing ingredient for electronic-photonic integrated circuits, i.e. the e cient group IV laser source. In this contribution, we present electroluminescence studies of reduced-pressure CVD grown, direct bandgap GeSn light emitting diodes (LEDs) with Sn contents up to 11 at.%. Besides homojunction GeSn LEDs, complex heterojunction structures, such as GeSn/Ge multi quantum wells (MQWs) have been studied. Structural and compositional investigations con rm high crystalline quality, abrupt interfaces and tailored strain of the grown structures. While also being suitable for light absorption applications, all devices show light emission in a narrow short-wave infrared (SWIR) range. Temperature dependent electroluminescence (EL) clearly indicates a fundamentally direct bandgap in the 11 at.% Sn sample, with room temperature emission at around 0.55 eV (2.25 m). We have, however, identi ed some limitations of the GeSn/Ge MQW approach regarding emission e ciency, which can be overcome by introducing SiGeSn ternary alloys as quantum con nement barriers

    Impact of tensile strain on low Sn content GeSn lasing

    Get PDF
    In recent years much effort has been made to increase the Sn content in GeSn alloys in order to increase direct bandgap charge carrier recombination and, therefore, to reach room temperature lasing. While being successful for the former, the increase of Sn content is detrimental, leading to increased defect concentrations and a lower thermal budget regarding processing. In this work we demonstrate strong photoluminescence enhancement in low Sn content Ge0.94Sn0.06 layers by implementing tensile strain. Fitting of the calculated photoluminescence spectra to reproduce our experimental results indicates a strain of ~1.45%, induced via an SiNx stressor layer, which is strong enough to transform the investigated layer into a direct bandgap semiconductor. Moreover, theoretical calculations, using the 8-band k·p model, show the advantages of using low Sn content tensile strained GeSn layers in respect to gain and lasing temperature. We show that low Sn content GeSn alloys have a strong potential to enable efficient room temperature lasers on electronic-photonic integrated circuits

    GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers

    Get PDF
    GeSn and SiGeSn are promising materials for the fabrication of a group IV laser source offering a number of design options from bulk to heterostructures and quantum wells. Here, we investigate GeSn/SiGeSn multi quantum wells using the optically pumped laser effect. Three complex heterostructures were grown on top of 200 nm thick strain-relaxed Ge0.9Sn0.1 buffers. The lasing is investigated in terms of threshold and maximal lasing operation temperature by comparing multiple quantum well to double heterostructure samples. Pumping under two different wavelengths of 1064 and 1550 nm yields comparable lasing thresholds. The design with multi quantum wells reduces the lasing threshold to 40 ± 5 kW/cm2 at 20 K, almost 10 times lower than for bulk structures. Moreover, 20 K higher maximal lasing temperatures were found for lower energy pumping of 1550 nm

    The thermal stability of epitaxial GeSn layers

    Get PDF
    We report on the direct observation of lattice relaxation and Sn segregation of GeSn/Ge/Si heterostructures under annealing. We investigated strained and partially relaxed epi-layers with Sn content in the 5 at. %-12 at. % range. In relaxed samples, we observe a further strain relaxation followed by a sudden Sn segregation, resulting in the separation of a β-Sn phase. In pseudomorphic samples, a slower segregation process progressively leads to the accumulation of Sn at the surface only. The different behaviors are explained by the role of dislocations in the Sn diffusion process. The positive impact of annealing on optical emission is also discussed

    Quantum Confinement Effects in GeSn/SiGeSn Heterostructure Lasers

    No full text
    The development of a light source on Si, which can be integrated in photonic circuits together with CMOS electronics, is an outstanding goal in the field of Silicon photonics. This could e.g. help to overcome bandwidth limitations and losses of copper interconnects as the number of high-speed transistors on a chip increases. Here, we discuss direct bandgap group IV materials, GeSn/SiGeSn heterostructures and resulting quantum confinement effects for laser implementation. After material characterization, optical properties, including lasing, are probed via photoluminescence spectrometry. The quantum confinement effect in GeSn wells of different thicknesses is investigated. Theoretical calculations show strong quantum confinement to be undesirable past a certain level, as the very different effective masses of r and L electrons lead to a decrease of the L-to Γ-valley energy difference. A main limiting factor for lasing devices turns out to be the defective region at the interface to the Ge substrate due to the high lattice mismatch to GeSn. The use of buffer technology and subsequent pseudomorphic growth of multi-quantum-wells structures offers confinement of carriers in the active material, far from the misfit dislocations region. Performance is strongly boosted, as a reduction of lasing thresholds from 300 kW/cm2 for bulk devices to below 45 kW/cm2 in multi-quantum-well lasers is observed at low temperatures, with the reduction in threshold far outpacing the reduction in active gain material volume

    Reduced threshold microdisk lasers from GeSn/SiGeSn heterostructures

    No full text
    We present optically pumped lasing from group IV GeSn/SiGeSn heterostructures. A comparison between double heterostructure and multi-quantum-well microdisk cavities reveals advantages of the multi-well design. Strongly reduced lasing thresholds compared to values from bulk devices are observed

    Study of GeSn based heterostructures: towards optimized group IV MQW LEDs

    Get PDF
    We present results on CVD growth and electro-optical characterization of Ge0.92Sn0.08/Ge p-i-n heterostructure diodes. The suitability of Ge as barriers for direct bandgap GeSn active layers in different LED geometries, such as double heterostructures and multi quantum wells is discussed based on electroluminescence data. Theoretical calculations by effective mass and 6 band k∙p method reveal low barrier heights for this specific structure. Best configurations offer only a maximum barrier height for electrons of about 40 meV at the Γ point at room temperature (e.g. 300 K), evidently insufficient for proper light emitting devices. An alternative solution using SiGeSn as barrier material is introduced, which provides appropriate band alignment for both electrons and holes resulting in efficient confinement in direct bandgap GeSn wells. Finally, epitaxial growth of such a complete SiGeSn/GeSn/SiGeSn double heterostructure including doping is shown
    corecore