17 research outputs found

    Analysis of the use of aluminum pipes for irrigation as an electrical conduit for an underground installation

    Get PDF
    In the present work, the feasibility of using aluminum pipes for irrigation in agricultural fields for reuse on a farm as underground canalization is analyzed. Due to the need to have a group of grain mills, it is necessary to build a new electrical branch in the installation, and due to limitations it is essential that the new pipeline be buried. Therefore, the finite element method is used to analyze the behavior of three conductors within the aluminum duct. Taking into account the effects of the magnetic field in the aluminum material and the eddy currents that are formed, which increase the losses in the energy distribution. The analysis of the behavior of electrical losses within the pipeline, it was studied how the proximity of the conductors to the pipe wall affects and the changing the distribution of the conductors inside the pipe was also verified

    Potencialidades de la aplicación OPEDU para el estudio de los amplificadores operacionales

    Get PDF
    El presente trabajo tiene como objetivo proponer la aplicación educativa libre sobre amplificadores operaciones(OpEdu), en su versión 0.5, basada en el software libre Scilab, que permite el análisis, la experimentación, demostración y diseño de las funciones de los amplificadores operacionales. Dentro de los resultados obtenidos se encuentran el desarrollo de siete módulos de diseño como son el amplificador inversor, amplificador no inversor, amplificador diferencial, amplificador sumador y convertidor de tensión – corriente. La aplicación va dirigida a la enseñanza de la ingeniería específicamente de los amplificadores operacionales, entre sus utilidades prácticas se encuentran que los estudiantes sean capaces de realizar independientemente sus propios experimentos y diseños en un ambiente seguro y contribuir al desarrollo nacional de aplicaciones informáticas libres. Este tipo de software es generalmente de licencia privada, con un alto costo de adquisición, por lo que sus semejantes, en licencia libre, permite un mayor alcance entre los estudiantes y especialistas a fines

    La programación computacional como método para mejorar el proceso de enseñanza – aprendizaje de los ingenieros electricistas

    Get PDF
    Las actuales transformaciones en el modelo de formación han exigido a la Educación Superior, una reconsideración de los modelos del perfil profesional. En este empeño se perfecciona el currículo en la carrera de Ingeniería Eléctrica, en el que la esencialidad de los contenidos es fundamental para reducir el tiempo de formación y lograr mayores niveles de independencia y protagonismo del estudiante. Para ello es importante aprovechar las ventajas que ofrecen las Tecnologías de la Información y la Comunicación en el ámbito educativo, por lo que el objetivo del artículo es proponer la programación como método para mejorar el proceso de enseñanza-aprendizaje de los ingenieros electricistas mediante el desarrollo de una aplicación de interfaz gráfica derivada del Scilab. La investigación se desarrolló en la carrera de Ingeniería Eléctrica con una muestra de 70 estudiantes de 4to año, los resultados que se obtienen corroboran la importancia de utilizar el método propuesto

    Bio-Inspired Wearable Antennas

    Get PDF
    Due to the recent miniaturization of wireless devices, the use of wearable antennas is steadily increasing. A wearable antenna is intended to be a part of the clothing used for communication purposes. In this way, a lower visual cost may be achieved. Recently, biologically inspired design, a kind of design by cross-domain analogy is a promising paradigm for innovation as well as low visual cost. The shapes of the plants are structures optimized by nature with the primary goal of light energy capture, transforming it into chemical energy. In this case, they have similar behavior to that of parabolic reflectors; this enables microwave engineers design innovative antennas using bio-inspired concepts. One of the advantages of using bio-inspired plant shapes is the design of antennas with great perimeters in compact structures. Thus, we have small antennas operating in low frequencies. This chapter presents the recent development in bio-inspired wearable antennas, easily integrated to the clothes and accessories used by the body, built in denim, low-cost flexible dielectric, and polyamide flexible dielectric, that is flexible with high resistance to twists and temperatures, for wireless body area network (WBAN) applications, operating in cellular mobile (2G, 3G, and 4G) and wireless local area network (2.4 and 5 GHz) protocols

    Bio-Inspired Microstrip Antenna

    Get PDF
    In the last few years, bio‐inspired solutions have attracted the attention of the scientific community. Several world‐renowned institutions have sponsored and created laboratories in order to understand the forms, functions and behavior of living organisms. Some methods can be highlighted in the search for geometric representation of the shapes found in the nature, the fractal geometry, the polar geometry, and the superformula of Gielis. This chapter is focusing on bio‐inspired microstrip antennas, especially on leaf‐shaped antennas from the Gielis superformula that open a vast research field for more compact antennas with low visual impact

    Fractal and Polar Microstrip Antennas and Arrays for Wireless Communications

    Get PDF
    This chapter presents the research done by authors in recent years on microstrip antennas and their applications in wireless sensors network. The subject is delimited to the study of conventional microstrip antennas, from which antennas with fractal and polar shapes are proposed. A detailed description of the antenna design methodology is presented for some prototypes of microstrip antennas manufactured with different dielectric substrates. Analysis of the proposed antennas has been done through computational simulation of full-wave methods. Experimental characterization of antennas and dielectric materials has been performed with the use of a vector network analyzer. The results obtained for the resonant and radiation parameters of the antennas are presented. Computer-aided design (CAD) of microstrip antennas and arrays using fractal and polar geometrical transformations results in a wide class of antenna elements with desirable and unique characteristics, such as compact, exclusive, and esthetic antenna design for multiband or broadband frequency operation with stable radiation pattern

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore