2,368 research outputs found

    Geometric phase and gauge theory structure in quantum computing

    Full text link
    We discuss the presence of a geometrical phase in the evolution of a qubit state and its gauge structure. The time evolution operator is found to be the free energy operator, rather than the Hamiltonian operator.Comment: 5 pages, presented at Fifth International Workshop DICE2010: Space-Time-Matter - current issues in quantum mechanics and beyond, Castiglioncello (Tuscany), September 13-17, 201

    Disentangling age and metallicity in distant unresolved stellar systems

    Full text link
    We present some results of an observational and theoretical study on unresolved stellar systems based on the Surface Brightness Fluctuations (SBF) technique. It is shown that SBF magnitudes are a valuable tracer of stellar population properties, and a reliable distance indicator. SBF magnitudes, SBF-colors, and SBF-gradients can help to constrain within relatively narrow limits the metallicity and age of the dominant stellar component in distant stellar systems, especially if coupled with other spectro-photometric indicators.Comment: A contributed paper to the Cefalu' (Italy) "Probing Stellar Populations out to the Distant Universe", 4 pages. To appear as an AIP Conference Proceedin

    Multifrequency observations of XTE J0421+560/CI Cam in outburst

    Get PDF
    We report on two X-ray observations of the transient source XTE J0421+560 performed by BeppoSAX, and on a series of observations performed by the 0.7m Teramo-Normale Telescope. Outburst peak occurrence time and duration depend on photon energy: the outburst peak is achieved first in the X-ray band, then in the optical and finally in the radio. An exponential decay law fits well the X-ray data except in the TOO2 0.5-1.0 keV band, where erratic time variability is detected. During TOO1 the e-folding time scale decreases with energy up to ~ 20 keV, when it achieves a saturation; during TOO2 it decreases up to ~ 2 keV and then increases. This change is correlated with a spectral change, characterized by the onset of a soft (< 2 keV) component in TOO2 (Orr et al. 1998). This component might originate from the relativistic jets, while the hard component is more likely associated to processes occurring in the circumstellar matter and/or near the compact object. Optical observations show that the object appears intrinsically red even during the outburst. The nature of the compact object is discussed.Comment: Four pages. Accepted for publication in A&A Lette

    Surface Brightness Fluctuations from archival ACS images: a stellar population and distance study

    Full text link
    We derive Surface Brightness Fluctuations (SBF) and integrated magnitudes in the V- and I-bands using Advanced Camera for Surveys (ACS) archival data. The sample includes 14 galaxies covering a wide range of physical properties: morphology, total absolute magnitude, integrated color. We take advantage of the latter characteristic of the sample to check existing empirical calibrations of absolute SBF magnitudes both in the I- and V-passbands. Additionally, by comparing our SBF and color data with the Teramo-SPoT simple stellar population models, and other recent sets of population synthesis models, we discuss the feasibility of stellar population studies based on fluctuation magnitudes analysis. The main result of this study is that multiband optical SBF data and integrated colors can be used to significantly constrain the chemical composition of the dominant stellar system in the galaxy, but not the age in the case of systems older than 3 Gyr. SBF color gradients are also detected and analyzed. These SBF gradient data, together with other available data, point to the existence of mass dependent metallicity gradients in galaxies, with the more massive objects showing a non--negligible SBF versus color gradient. The comparison with models suggests that such gradients imply more metal rich stellar populations in the galaxies' inner regions with respect to the outer ones.Comment: ApJ Accepte

    Detecting the nir fingerprint of colors: The characteristic response of modern blue pigments

    Get PDF
    Reflectance spectroscopy in the ultraviolet (UV), visible (Vis), and near infrared (NIR) range is widely applied to art studies for the characterization of paints and pigments, with the advantages of non-invasive techniques. Isolating and detecting the fingerprint of pigments, especially in the NIR range, is quite challenging, since the presence of vibrational transitions of the most common organic functional groups prevents to relate the optical spectrum of a composite sample, as an artwork is, to each one of its elements (i.e., support, binder, and specific pigment). In this work, a method is presented to obtain the UV-Vis-NIR optical response of the single components of a model composite sample reproducing an artwork, i.e., the support, the binder, and the pigment or dye, by using diffuse reflectance spectroscopy. This allowed us to obtain the NIR spectral fingerprint of blue pigments and to identify specific features possibly applicable for detecting cobalt and phthalocyanine blue colors in artwork analysis

    Artificial Intelligence for Classifying the Relationship between Impacted Third Molar and Mandibular Canal on Panoramic Radiographs

    Get PDF
    The purpose of this investigation was to evaluate the diagnostic performance of two convolutional neural networks (CNNs), namely ResNet-152 and VGG-19, in analyzing, on panoramic images, the rapport that exists between the lower third molar (MM3) and the mandibular canal (MC), and to compare this performance with that of an inexperienced observer (a sixth year dental student). Utilizing the k-fold cross-validation technique, 142 MM3 images, cropped from 83 panoramic images, were split into 80% as training and validation data and 20% as test data. They were subsequently labeled by an experienced radiologist as the gold standard. In order to compare the diagnostic capabilities of CNN algorithms and the inexperienced observer, the diagnostic accuracy, sensitivity, specificity, and positive predictive value (PPV) were determined. ResNet-152 achieved a mean sensitivity, specificity, PPV, and accuracy, of 84.09%, 94.11%, 92.11%, and 88.86%, respectively. VGG-19 achieved 71.82%, 93.33%, 92.26%, and 85.28% regarding the aforementioned characteristics. The dental student's diagnostic performance was respectively 69.60%, 53.00%, 64.85%, and 62.53%. This work demonstrated the potential use of deep CNN architecture for the identification and evaluation of the contact between MM3 and MC in panoramic pictures. In addition, CNNs could be a useful tool to assist inexperienced observers in more accurately identifying contact relationships between MM3 and MC on panoramic images

    Prevalence of adenomyosis in endometrial cancer patients: a systematic review and meta-analysis

    Get PDF
    Introduction: Several studies have assessed the histological co-existence of endometrial carcinoma (EC) and adenomyosis. However, the significance of this association is still unclear. Objective: To assess the prevalence of adenomyosis in women with EC for a better understanding of the association between the two diseases. Materials and methods: A systematic review and meta-analysis was performed by searching electronics databases from their inception to March 2020, for all studies that allowed extraction of data about prevalence of adenomyosis in EC patients. Adenomyosis prevalence was calculated for each included study and as pooled estimate, with 95% confidence interval (CI). Results: Eight retrospective cohort studies assessing 5573 EC patients were included in our analysis. Of total, 1322 were patients with adenomyosis, and 4251 were patients without adenomyosis. Pooled prevalence of adenomyosis in EC patients was 22.6% (95% CI 12.7–37.1%). Conclusion: Adenomyosis prevalence in EC patients was not different from that reported for other gynecological conditions. The supposed association between the two diseases appears unsupported

    Orchestrating the measurements on twelve magnet test benches

    Get PDF
    The final LHC dipole series test set-up will consist of 12 benches, organised in 6 clusters of two benches sharing the largest and most expensive devices. This sharing is made possible by a deliberate de-phasing of the tests among magnets, ensuring an optimum use of resources, such as cryogenics and power equipment, without limiting the total throughput. To orchestrate the measurements a Test Master is needed to organise the tests per cluster and a Resource Manager to centralise the booking of the resources
    • …
    corecore