141 research outputs found

    Increased urine IgM excretion predicts cardiovascular events in patients with type 1 diabetes nephropathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic nephropathy, a major complication of diabetes, is characterized by progressive renal injury and increased cardiovascular mortality. An increased urinary albumin excretion due dysfunction of the glomerular barrier is an early sign of diabetic nephropathy. An increased urinary excretion of higher molecular weight proteins such as IgM appears with progression of glomerular injury. We aim here to study the prognostic significance of urine IgM excretion in patients with type 1 diabetes mellitus (type 1 diabetic nephropathy).</p> <p>Methods</p> <p>This is an observational study of 139 patients with type1 diabetes mellitus (79 males and 60 females) under routine care at the diabetic outpatient clinic at the Lund University Hospital. The median follow-up time was 18 years (1 to 22) years. Urine albumin and urine IgM concentration were measured at time of recruitment.</p> <p>Results</p> <p>Overall 32 (14 male and 18 female) patients died in a cardiovascular event and 20 (11 male and 9 female) patients reached end-stage renal disease. Univariate analysis indicated that patient survival and renal survival were inversely associated with urine albumin excretion (RR = 2.9 and 5.8, respectively) and urine IgM excretion (RR = 4.6 and 5.7, respectively). Stratified analysis demonstrated that in patients with different degrees of albuminuria, the cardiovascular mortality rate and the incidence of end-stage renal disease was approximately three times higher in patients with increased urine IgM excretion.</p> <p>Conclusion</p> <p>An increase in urinary IgM excretion in patients with type 1 diabetes is associated with an increased risk for cardiovascular mortality and renal failure, regardless of the degree of albuminuria.</p

    Permanent Neonatal Diabetes Caused by Creation of an Ectopic Splice Site within the INS Gene

    Get PDF
    PublishedCase ReportsJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: The aim of this study was to characterize the genetic etiology in a patient who presented with permanent neonatal diabetes at 2 months of age. METHODOLOGY/PRINCIPAL FINDINGS: Regulatory elements and coding exons 2 and 3 of the INS gene were amplified and sequenced from genomic and complementary DNA samples. A novel heterozygous INS mutation within the terminal intron of the gene was identified in the proband and her affected father. This mutation introduces an ectopic splice site leading to the insertion of 29 nucleotides from the intronic sequence into the mature mRNA, which results in a longer and abnormal transcript. CONCLUSIONS/SIGNIFICANCE: This study highlights the importance of routinely sequencing the exon-intron boundaries and the need to carry out additional studies to confirm the pathogenicity of any identified intronic genetic variants.Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM)Instituto de Salud Carlos III of the Spanish Ministry of HealthFIS-programsWellcome Trus

    Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    Get PDF
    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man

    Detection and Characterization of CD133+ Cancer Stem Cells in Human Solid Tumours

    Get PDF
    Osteosarcoma is the most common primary tumour of bone. Solid tumours are made of heterogeneous cell populations, which display different goals and roles in tumour economy. A rather small cell subset can hold or acquire stem potentials, gaining aggressiveness and increasing expectancy of recurrence. The CD133 antigen is a pentaspan membrane glycoprotein, which has been proposed as a cancer stem cell marker, since it has been previously demonstrated to be capable of identifying a cancer initiating subpopulation in brain, colon, melanoma and other solid tumours. Therefore, our aim was to observe the possible presence of cells expressing the CD133 antigen within solid tumour cell lines of osteosarcoma and, then, understand their biological characteristics and performances.In this study, using SAOS2, MG63 and U2OS, three human sarcoma cell lines isolated from young Caucasian subjects, we were able to identify and characterize, among them, CD133+ cells showing the following features: high proliferation rate, cell cycle detection in a G2\M phase, positivity for Ki-67, and expression of ABCG2 transporters. In addition, at the FACS, we were able to observe the CD133+ cell fraction showing side population profile and forming sphere-clusters in serum-free medium with a high clonogenic efficiency.Taken together, our findings lead to the thought that we can assume that we have identified, for the first time, CD133+ cells within osteosarcoma cell lines, showing many features of cancer stem cells. This can be of rather interest in order to design new therapies against the bone cancer

    Clinical and Functional Characterization of a Patient Carrying a Compound Heterozygous Pericentrin Mutation and a Heterozygous IGF1 Receptor Mutation

    Get PDF
    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration

    IGF-I activates caspases 3/7, 8 and 9 but does not induce cell death in colorectal cancer cells

    Get PDF
    Background: Colorectal cancer is the third most common cancer in the western world. Chemotherapy is often ineffective to treat the advanced colorectal cancers due to the chemoresistance. A major contributor to chemo-resistance is tumour-derived inhibition or avoidance of apoptosis. Insulin-like growth factor I (IGF-I) has been known to play a prominent role in colorectal cancer development and progression. The role of IGF-I in cancer cell apoptosis is not completely understood.Methods: Using three colorectal cancer cell lines and one muscle cell line, associations between IGF-I and activities of caspase 3/7, 8 and 9 have been examined; the role of insulin-like growth factor I receptor (IGF-IR) in the caspase activation has been investigated.Results: The results show that exogenous IGF-I significantly increases activity of caspases 3/7, 8 and 9 in all cell lines used; blocking IGF-I receptor reduce IGF-I-induced caspase activation. Further studies demonstrate that IGF-I induced caspase activation does not result in cell death. This is the first report to show that while IGF-I activates caspases 3/7, 8 and 9 it does not cause colorectal cancer cell death.Conclusion: The study suggests that caspase activation is not synonymous with apoptosis and that activation of caspases may not necessarily induce cell death
    corecore