7 research outputs found

    Sulfide trace element signatures and S- and Pb-isotope geochemistry of porphyry copper and epithermal gold-base metal mineralization in the Elatsite–Chelopech ore field (Bulgaria)

    Get PDF
    The Elatsite–Chelopech ore field in the northern part of the Panagyurishte district in Central Bulgaria comprises numerous spatially associated porphyry copper and epithermal gold deposits and prospects. In addition to the mineralization and alteration features, trace elements, lead and sulfur isotope signatures of sulfide minerals from porphyry copper, base metal and gold-base metal deposits/prospects have been studied. LA-ICP-MS analyses of pyrite, arsenopyrite and sulfosalt minerals validate them as major carriers for Au, Ag, Sb, Se and Co. Pyrite from the three types of mineralization has specific geochemical characteristics. Pyrite from the porphyry copper deposits/prospects has generally lower total trace element content compared to pyrite from the epithermal prospects, except for Se, Co and Ni. Pyrite from the base metal and gold-base metal veins is enriched in As, Au, Ag, Sb and Pb. In pyrite from the base metal deposits, Co and Ni have contents comparable to the pyrite from the porphyry copper deposits, while pyrite from the gold-base metal veins shows lower Co and Ni. Arsenopyrite from these deposits shows similar features. Similarly, sphalerite from the gold-base metal veins also has lower Co content compared to sphalerite from the base metal veins but higher In and Cu contents. In addition to the close spatial relationships between the Elatsite and Gorna Kamenitsa porphyry Cu deposits and Negarstitsa-West and Dolna Kamenitsa base metal prospects, as well as similarities in the mineralization and alteration styles, the lead isotopic (206Pb/204Pb = 18.61–18.68, 207Pb/204Pb = 15.64–15.65 for porphyry and 206Pb/204Pb = 18.55–18.67, 207Pb/204Pb = 15.64–15.68 for base metal) and sulfur isotopic (δ34S values of −3 to +1‰ for porphyry and δ34S values of −1.7 to +3.5‰ for base metal) signatures of sulfides support the idea of a genetic link between these two types of deposits. The porphyry and base-metal mineralization result from a common major ore-forming event during the Late Cretaceous, corresponding to deep/higher-temperature and shallower/distal/lower-temperature environments, respectively. In particular, more radiogenic lead (206Pb/204Pb = 18.41–18.47, 207Pb/204Pb = 15.67–15.76) and slightly different sulfur isotopic compositions (δ34S values of +3.5 to +10.6‰) of sulfides from the distal gold-base metal veins of Kordunsko Dere, Svishti Plaz and Shipkite might be a consequence of the interaction of the ore-forming fluids with an external older crustal and isotopically positive S source. Alternatively, a different fluid source/event for the formation of these gold-base metal veins may be suggested

    Evidence of late Palaeozoic and Middle Triassic magmatism in the Sakar-Strandzha Zone, SE Bulgaria: Regional geodynamic implications

    No full text
    Late Paleozoic granitoids, meta-granitoids and meta-volcanic rocks predominate in the metamorphic basement of the northern and western parts of the Sakar-Strandzha Zone (SASTZ) in southeast Bulgaria, together with subsidiaryTriassic rocks of the same nature. Generally, igneous minerals and textures are preserved, except the meta-granitoids and meta-volcanic rocks that experienced a low- to high-grade metamorphic overprint. The volcanic rocks have a peraluminous and high-K calc-alkaline composition, and the granitoids range between I- to S-type compositions, typical of volcanic arcs and syn-collisional settings. LILE and LREE-enrichment and Nb-Ta anomalies characterize the intrusive and extrusive rock suites. U-Pb zircon geochronology has yielded crystallization ages between 245 and 230 Ma for the majority of the studied igneous rocks, and between 297 and 281 Ma for a small group of igneous rocks. Early Permian and Middle Triassic igneous suites of the northern and western SASTZ have similar compositions and a similar tectonic setting when compared to Late Carboniferous-Early Permian intrusive and extrusive suites of the adjacent Sakar unit of the SASTZ, confirming a common regional late Paleozoic-early Mesozoic tectono-magmatic event. As the Late Carboniferous-Permian to Middle Triassic magmatic arc components extend across the SASTZ, they trace the time-correspondent active continental margin along the Eurasian plate during subduction of the Paleotethys oceanic lithosphere. The late Paleozoic Eurasian active continental margin magmatic arc evolution of the SASTZ can be linked with the Serbo-Macedonian-Rhodope zones to the southwest, where coeval meta-granitoids document the same geodynamic context. By contrast, the Triassic igneous suite of the SASTZ is unrelated to the Serbo-Macedonian-Rhodope zones, where Triassic meta-ophiolite and meta-granitoids record Neotethys rifting

    Timing and tectonic significance of Paleozoic magmatism in the Sakar unit of the Sakar-Strandzha Zone, SE Bulgaria

    No full text
    Palaeozoic granitoids and meta-granitoids dominate the metamorphic basement of the Sakar unit of the Sakar-Strandzha Zone (SASTZ) in southeast Bulgaria. In this article, we present new wholerock geochemical data and U–Pb zircon geochronology for the Sakar unit granitoids. The igneous minerals and textures are preserved, except the meta-granitoids that experienced a weak amphibolite-facies overprint. Geochemistry reveals compositions of peraluminous high-K calc-alkaline Ito S-type granitoids of volcanic arc origin. A major group of LILE-LREE-enriched granitoids and meta-granitoids and a single HFSE-HREE-enriched meta-granitoid are distinguished. U–Pb geochronology has yielded crystallization ages between 305 and 295 Ma for the major group granitoids and a ca. 462 Ma crystallization age of HFSE-HREE-enriched meta-granitoid. Late Palaeozoic granitoids of the Sakar unit show similar compositions and a similar tectonic setting when compared to other granitoids of the SASTZ, confirming a uniform region-wide tectonomagmatic event. As the Late Carboniferous-Permian magmatic arc components extend across the SASTZ, they trace the time-correspondent active continental margin along the Eurasian plate during subduction of the Palaeotethys oceanic lithosphere. The late Palaeozoic Eurasian active continental margin magmatic arc evolution of the SASTZ can be extended into the Serbo-Macedonian-Rhodope zones to the west, where time equivalent meta-granitoids support the same geodynamic context

    Detrital zircon age and Sr isotopic constraints for a Late Palaeozoic carbonate platform in the lower Rhodope thrust system, Pirin, SW Bulgaria

    No full text
    We focused on the Pirin–Pangeon–Thasos carbonate sequence of the Rhodope thrust system, combining Sr isotopes from marble with U–Pb dating of detrital zircons from interlayered schists with outcrop near the villages of Ilindentsi and Petrovo in Bulgaria. The youngest zircon age at Ilindentsi is 266 Ma, i.e. Middle Permian, while the youngest zircon at Petrovo yielded an age of 290 Ma, i.e. Early Permian. Strontium isotopes range from 0.707420 to 0.707653, and are consistent with a Middle Permian maximum depositional age. Middle Permian sedimentation of this carbonate platform most likely occurred along the Eurasian margin rather than the Gondwana margin

    Compositional diversity of Eocene–Oligocene basaltic magmatism in the Eastern Rhodopes, SE Bulgaria: implications for genesis and tectonic setting

    No full text
    Basaltic magmatism occurred only rarely within the extensive Eocene–Oligocene volcanic activity in the Eastern Rhodope Mts., SE Bulgaria. The earliest mafic volcanism started at ca. 34 Ma with K-rich trachybasalts strongly enriched in large ion lithophile elements (LILE), particularly Ba, Sr, Pb, Th, and light rare earth elements (REE) relative to the high field strength elements (HFSE). They have high 87Sr/86Sr ratios (0.70688–0.70756), low 144Nd/144Nd (0.51252–0.51243), and very high 207Pb/204Pb (15.74–15.76) and 208Pb/204Pb (39.07–39.14) at low 206Pb/204Pb (18.72–18.73) ratios, reflecting high degrees of crustal contamination. Shoshonitic basalts and absarokites and calc-alkaline and high-K calc-alkaline magmas, which erupted between 33 and 31 Ma, have decreasing Sr isotope initial ratios from west (0.70825) to east (0.70647) at approximately constant 143Nd/144Nd isotopic compositions (0.51252–0.51243) and slightly decreasing 207Pb/204Pb (15.66–15.72) and 208Pb/204Pb (38.80–38.96) and increasing 206Pb/204Pb (18.73–18.90) in comparison with the trachybasalts. All these rocks are characterized by negative Nb–Ti and Eu anomalies. They resulted from different degrees of partial melting of enriched asthenosphere, and the magmas were later contaminated by the Rhodopian crust. The end of the magmatic activity (28–26 Ma) was marked by emplacement of alkaline dykes, spatially associated with metamorphic core complexes. They are characterized by low 87Sr/86Sr (0.70323–0.70338), high 144Nd/144Nd (0.51290–0.51289), and 206Pb/204Pb (18.91–19.02) at lower 207Pb/204Pb (15.52–15.64) and 208Pb/204Pb (38.59–38.87) ratios, consistent with an origin from a source similar to OIB-like European Asthenospheric reservoir contaminated by depleted mantle lithosphere. The Eastern Rhodope Eo-Oligocene mafic magmatism formed as part of the prolonged extensional tectonics of the whole Rhodope region in Late Cretaceous–Paleogene time, similar to those in the U.S. Cordillera and Menderes Massif (Turkey). Initiation of extension is constrained by the formation of metamorphic core complexes, low-angle detachment faults, and supradetachment Maastrichtian–Paleocene sedimentary basins, intimately associated with 70–42 Ma granitoids and metamorphism which record mantle perturbation. The Eo-Oligocene stage started with block faulting, sedimentary basin formation, and extensive acid-intermediate and basic volcanism over the entire Eastern Rhodope area. The order of emplacement of the basalts from high-Ba trachybasalts through shoshonites, calc-alkaline and high-K calc-alkaline basalts, and finally to purely asthenospheric-derived alkaline basalts, with progressively decreasing amount of crustal component, reflects upwelling asthenospheric mantle. Most of the models proposed in the literature to explain extension and magmagenesis in the Rhodopes and the Mediterranean region cannot be applied directly. Critical evaluation of these models suggest that some form of convective removal of the lithosphere and mantle diapirism provide the most satisfactory explanation for the Paleogene structural, metamorphic, and magmatic evolution of the Rhodopes
    corecore