92 research outputs found

    Bohring Opitz Syndrome: A case of a rare genetic disorder

    Get PDF
    Bohring-Opitz syndrome (BOS) is a rare genetic disorder, characterized by feeding difficulties, developmental delay, microcephaly, micrognathia, limb anomalies, and typical phenotypic facial features. The cause of the syndrome is identified as de novo heterogeneous mutations in the ASXL1 gene, but other mutations have been described in some patients. Most patients die in early childhood due to infections and comorbidities. As molecular confirmation by genetic studies is not always possible, this syndrome is diagnosed on the basis of distinctive clinical features. We report a case of the 6-month-old male child having gastroesophageal reflux and physical features of microcephaly, sloping forehead, sparse hair, craniosynostosis, telecanthus, hypertelorism, prominent eyes, posteriorly rotated ears, high-arched palate, micrognathia, pes planus, and typical BOS posture. A multidisciplinary approach is required for managing these patients

    Neurology and the histiocytoses: a case of Rosai-Dorfman-Destombes disease

    Get PDF
    The histiocytoses are a group of rare disorders characterised by the accumulation of neoplastic or non-neoplastic activated histiocytes in various tissues. Phenotypes vary widely from cutaneous lesions or lymphadenopathy that regress spontaneously to disseminated disease with poor prognosis. Neurological symptoms can be a presenting feature or appear during the course of disease. We present a challenging diagnostic and management case of Rosai-Dorfman-Destombes disease in a 48-year-old woman with a relapsing, partially steroid-responsive syndrome comprising patchy, non-length-dependent radiculoneuropathy with diffuse pachymeningitis and widespread systemic disease, and recent dramatic response to novel mitogen-activated kinase pathway inhibition. We discuss the clinical characteristics, diagnosis, recent breakthroughs in pathogenesis and emerging treatment options for Rosai-Dorfman disease and for the histiocytoses with neurological sequelae, including Langerhans cell histiocytosis and Erdheim-Chester disease

    Hereditary leukoencephalopathy with axonal spheroids: a spectrum of phenotypes from CNS vasculitis to parkinsonism in an adult onset leukodystrophy series

    Get PDF
    Background: Hereditary diffuse leukoencephalopathy with neuroaxonal spheroids (HDLS) is a hereditary, adult onset leukodystrophy which is characterised by the presence of axonal loss, axonal spheroids and variably present pigmented macrophages on pathological examination. It most frequently presents in adulthood with dementia and personality change. HDLS has recently been found to be caused by mutations in the colony stimulating factor-1 receptor (CSF1R) gene. Methods: In this study, we sequenced the CSF1R gene in a cohort of 48 patients from the UK, Greece and Ireland with adult onset leukodystrophy of unknown cause. Results: Five pathogenic mutations were found, including three novel mutations. The presentations ranged from suspected central nervous system (CNS) vasculitis to extrapyramidal to cognitive phenotypes. The case histories and imaging are presented here, in addition to neuropathological findings from two cases with novel mutations. Conclusion: We estimate that CSF1R mutations account for 10% of idiopathic adult onset leukodystrophies and that genetic testing for CSF1R mutations is essential in adult patients presenting with undefined CNS vasculitis or a leukodystrophy with prominent neuropsychiatric signs or dementia

    Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy

    Get PDF
    OBJECTIVE To expand the clinical phenotype of autosomal dominant congenital spinal muscular atrophy with lower extremity predominance (SMA-LED) due to mutations in the dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) gene. METHODS Patients with a phenotype suggestive of a motor, non-length-dependent neuronopathy predominantly affecting the lower limbs were identified at participating neuromuscular centers and referred for targeted sequencing of DYNC1H1. RESULTS We report a cohort of 30 cases of SMA-LED from 16 families, carrying mutations in the tail and motor domains of DYNC1H1, including 10 novel mutations. These patients are characterized by congenital or childhood-onset lower limb wasting and weakness frequently associated with cognitive impairment. The clinical severity is variable, ranging from generalized arthrogryposis and inability to ambulate to exclusive and mild lower limb weakness. In many individuals with cognitive impairment (9/30 had cognitive impairment) who underwent brain MRI, there was an underlying structural malformation resulting in polymicrogyric appearance. The lower limb muscle MRI shows a distinctive pattern suggestive of denervation characterized by sparing and relative hypertrophy of the adductor longus and semitendinosus muscles at the thigh level, and diffuse involvement with relative sparing of the anterior-medial muscles at the calf level. Proximal muscle histopathology did not always show classic neurogenic features. CONCLUSION Our report expands the clinical spectrum of DYNC1H1-related SMA-LED to include generalized arthrogryposis. In addition, we report that the neurogenic peripheral pathology and the CNS neuronal migration defects are often associated, reinforcing the importance of DYNC1H1 in both central and peripheral neuronal functions

    How do deer respiratory epithelial cells weather the initial storm of SARS-CoV-2 WA1/2020 strain?

    Get PDF
    The potential infectivity of severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with the SARS-CoV-2 WA1/2020 strain was assessed throughout 48 h post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to virus infection, with significantly (P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via interleukin-17 (IL-17) and nuclear factor-κB (NF-κB) signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans.This article is published as Sarlo Davila, Kaitlyn M., Rahul K. Nelli, Kruttika S. Phadke, Rachel M. Ruden, Yongming Sang, Bryan H. Bellaire, Luis G. Gimenez-Lirola, and Laura C. Miller. "How do deer respiratory epithelial cells weather the initial storm of SARS-CoV-2 WA1/2020 strain?." Microbiology Spectrum (2024): e02524-23. doi: https://doi.org/10.1128/spectrum.02524-23. Copyright © 2024 Sarlo Davila et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license

    Specialist multidisciplinary input maximises rare disease diagnoses from whole genome sequencing

    Get PDF
    Diagnostic whole genome sequencing (WGS) is increasingly used in rare diseases. However, standard, semi-automated WGS analysis may overlook diagnoses in complex disorders. Here, we show that specialist multidisciplinary analysis of WGS, following an initial 'no primary findings' (NPF) report, improves diagnostic rates and alters management. We undertook WGS in 102 adults with diagnostically challenging primary mitochondrial disease phenotypes. NPF cases were reviewed by a genomic medicine team, thus enabling bespoke informatic approaches, co-ordinated phenotypic validation, and functional work. We enhanced the diagnostic rate from 16.7% to 31.4%, with management implications for all new diagnoses, and detected strong candidate disease-causing variants in a further 3.9% of patients. This approach presents a standardised model of care that supports mainstream clinicians and enhances diagnostic equity for complex disorders, thereby facilitating access to the potential benefits of genomic healthcare. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project: http://www.genomicsengland.co.uk

    GGPS1-associated muscular dystrophy with and without hearing loss

    Get PDF
    Ultra-rare biallelic pathogenic variants in geranylgeranyl diphosphate synthase 1 (GGPS1) have recently been associated with muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Here, we describe 11 affected individuals from four unpublished families with ultra-rare missense variants in GGPS1 and provide follow-up details from a previously reported family. Our cohort replicated most of the previously described clinical features of GGPS1 deficiency; however, hearing loss was present in only 46% of the individuals. This report consolidates the disease-causing role of biallelic variants in GGPS1 and demonstrates that hearing loss and ovarian insufficiency might be a variable feature of the GGPS1-associated muscular dystrophy

    Recessive mutations in MSTO1 cause mitochondrial dynamics impairment, leading to myopathy and ataxia.

    Get PDF
    We report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported. Studies in patients' fibroblasts revealed that MSTO1 protein levels were strongly reduced, the mitochondrial network was fragmented, and the fusion events among mitochondria were decreased, confirming the deleterious effect of the identified variants and the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for inherited neuromuscular disorders with multisystem features.Contract grant sponsors: EU NeurOmics (project N. 2012‐305121‐2); the European Community's Seventh Framework Programme (FP7/2007‐2013); Regione Emilia Romagna; the Telethon (grant GGP15041); the Pierfranco and Luisa Mariani Foundation; the MRC‐QQR (2015‐20120); the ERC advanced grant (FP7‐322424); the NRJ‐Institut de France grant; Telethon Network of Genetic Biobanks (grant GTB12001J); MRC Neuromuscular Centre (for the Biobank); Muscular Dystrophy UK; National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London

    Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy

    Get PDF
    Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin β2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics

    Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2.

    Get PDF
    Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms
    corecore