67 research outputs found
Porous PEDOT:PSS Particles and their Application as Tunable Cell Culture Substrate
Due to its biocompatibility, electrical conductivity, and tissue-like elasticity, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) constitutes a highly promising material regarding the fabrication of smart cell culture substrates. However, until now, high-throughput synthesis of pure PEDOT:PSS geometries was restricted to flat sheets and fibers. In this publication, the first microfluidic process for the synthesis of spherical, highly porous, pure PEDOT:PSS particles of adjustable material properties is presented. The particles are synthesized by the generation of PEDOT:PSS emulsion droplets within a 1-octanol continuous phase and their subsequent coagulation and partial crystallization in an isopropanol (IPA)/sulfuric acid (SA) bath. The process allows to tailor central particle characteristics such as crystallinity, particle diameter, pore size as well as electrochemical and mechanical properties by simply adjusting the IPA:SA ratio during droplet coagulation. To demonstrate the applicability of PEDOT:PSS particles as potential cell culture substrate, cultivations of L929 mouse fibroblast cells and MRC-5 human fibroblast cells are conducted. Both cell lines present exponential growth on PEDOT:PSS particles and reach confluency with cell viabilities above 95 vol.% on culture day 9. Single cell analysis could moreover reveal that mechanotransduction and cell infiltration can be controlled by the adjustment of particle crystallinity
Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers
Cubosomes are micro- and nanoparticles with a bicontinuous cubic two-phase structure, reported for the self-assembly of low molecular weight surfactants, for example, lipids, but rarely formed by polymers. These objects are characterized by a maximum continuous interface and high interface to volume ratio, which makes them promising candidates for efficient adsorbents and host-guest applications. Here we demonstrate self-assembly to nanoscale cuboidal particles with a bicontinuous cubic structure by amphiphilic poly(ionic liquid) diblock copolymers, poly(acrylic acid)-block-poly(4-vinylbenzyl)-3-butyl imidazolium bis(trifluoromethylsulfonyl)imide, in a mixture of tetrahydrofuran and water under optimized conditions. Structure determining parameters include polymer composition and concentration, temperature, and the variation of the solvent mixture. The formation of the cubosomes can be explained by the hierarchical interactions of the constituent components. The lattice structure of the block copolymers can be transferred to the shape of the particle as it is common for atomic and molecular faceted crystals
Recommended from our members
Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings
The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications
Recommended from our members
The Long Pentraxin PTX3 Is an Endogenous Inhibitor of Hyperoxaluria-Related Nephrocalcinosis and Chronic Kidney Disease
The long pentraxin 3 (PTX3) exerts a variety of regulatory functions in acute and chronic tissue inflammation. In particular, PTX3 acts as an opsonin for a variety of pathogens and endogenous particles. We hypothesized that PTX3 would exhibit opsonin-like functions toward calcium oxalate crystals, too, and inhibit crystal growth. This process is fundamental in kidney stone disease as well as in hyperoxaluria-related nephrocalcinosis, the paradigmatic cause of chronic kidney disease (CKD) in children with primary hyperoxaluria type I due to genetic defects in oxalate metabolism. Direct effects of PTX3 on calcium oxalate crystals were investigated in chemico by adding recombinant PTX3 to supersaturated calcium and oxalate solutions. PTX3, but not isomolar concentrations of albumin, dose-dependently inhibited crystal growth. In vivo, the PTX3 protein was undetectable in tubular epithelial cells and urine of wild-type mice under physiological conditions. However, its levels increased within 3 weeks of feeding an oxalate-rich diet, an exposure inducing hyperoxaluria-related nephrocalcinosis and CKD in selected mouse strains (male and female C57BL/6N and male Balb/c mice) but not in others (male and female 129SV and CD-1, male and female Balb/c mice). Genetic ablation of ptx3 in nephrocalcinosis un-susceptible B6;129 mice was sufficient to raise the oxalate nephropathy phenotype observed in susceptible strains. We conclude that PTX3 is an endogenous inhibitor of calcium oxalate crystal growth. This mechanism limits hyperoxaluria-related nephrocalcinosis, e.g., in primary or secondary hyperoxaluria, and potentially also in the more prevalent kidney stone disease
Recommended from our members
Nanovesicles displaying functional linear and branched oligomannose self-assembled from sequence-defined Janus glycodendrimers
Cell surfaces are often decorated with glycoconjugates that contain linear and more complex symmetrically and asymmetrically branched carbohydrates essential for cellular recognition and communication processes. Mannose is one of the fundamental building blocks of glycans in many biological membranes. Moreover, oligomannoses are commonly found on the surface of pathogens such as bacteria and viruses as both glycolipids and glycoproteins. However, their mechanism of action is not well understood, even though this is of great potential interest for translational medicine. Sequence-defined amphiphilic Janus glycodendrimers containing simple mono- and disaccharides that mimic glycolipids are known to self-assemble into glycodendrimersomes, which in turn resemble the surface of a cell by encoding carbohydrate activity via supramolecular multivalency. The synthetic challenge of preparing Janus glycodendrimers containing more complex linear and branched glycans has so far prevented access to more realistic cell mimics. However, the present work reports the use of an isothiocyanate-amine “click”-like reaction between isothiocyanate-containing sequence-defined amphiphilic Janus dendrimers and either linear or branched oligosaccharides containing up to six monosaccharide units attached to a hydrophobic amino-pentyl linker, a construct not expected to assemble into glycodendrimersomes. Unexpectedly, these oligoMan-containing dendrimers, which have their hydrophobic linker connected via a thiourea group to the amphiphilic part of Janus glycodendrimers, self-organize into nanoscale glycodendrimersomes. Specifically, the mannose-binding lectins that best agglutinate glycodendrimersomes are those displaying hexamannose. Lamellar “raft-like” nanomorphologies on the surface of glycodendrimersomes, self-organized from these sequence-defined glycans, endow these membrane mimics with high biological activity. © 2020 National Academy of Sciences. All rights reserved
Codelivery of resveratrol melatonin utilizing pH responsive sericin based nanocarriers inhibits the proliferation of breast cancer cell line at the different pH
Abstract Protein-based nanocarriers have demonstrated good potential for cancer drug delivery. Silk sericin nano-particle is arguably one of the best in this field. In this study, we developed a surface charge reversal sericin-based nanocarrier to co-deliver resveratrol and melatonin (MR-SNC) to MCF-7 breast cancer cells as combination therapy. MR-SNC was fabricated with various sericin concentrations via flash-nanoprecipitation as a simple and reproducible method without complicated equipment. The nanoparticles were subsequently characterized for their size, charge, morphology and shape by dynamic light scattering (DLS) and scanning electron microscope (SEM). Nanocarriers chemical and conformational analysis were done by fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) respectively. In vitro drug release was determined at different pH values (7.45, 6.5 and 6). The cellular uptake and cytotoxicity were studies using breast cancer MCF-7 cells. MR-SNC fabricated with the lowest sericin concentration (0.1%), showed a desirable 127Â nm size, with a net negative charge at physiological pH. Sericin structure was preserved entirely in the form of nano-particles. Among the three pH values we applied, the maximum in vitro drug release was at pH 6, 6.5, and 7.4, respectively. This pH dependency showed the charge reversal property of our smart nanocarrier via changing the surface charge from negative to positive in mildly acidic pH, destructing the electrostatic interactions between sericin surface amino acids. Cell viability studies demonstrated the significant toxicity of MR-SNC in MCF-7 cells at all pH values after 48Â h, suggesting a synergistic effect of combination therapy with the two antioxidants. The efficient cellular uptake of MR-SNC, DNA fragmentation and chromatin condensation was found at pH 6. Nutshell, our result indicated proficient release of the entrapped drug combination from MR-SNC in an acidic environment leading to cell apoptosis. This work introduces a smart pH-responsive nano-platform for anti-breast cancer drug delivery
Morphology Control in Poly(9,9-di‑<i>n</i>‑octyl-2,7-fluorene) Spherulite Particles Prepared via Dispersion Polymerization
Crystallinity in polymers is an important
means for tuning the
bulk properties of the material. PolyÂ(di-<i>n</i>-octylfluorene)
(PFO) is a semiconducting polymer with a multitude of semicrystalline
morphologies, which can be induced by physical treatment. Here we
present a synthetic method where narrowly dispersed PFO particles
are produced while the morphological composition of the semicrystalline
colloids can be controlled. The desired degree of crystallinity can
be adjusted by varying the concentration of a surface active polymer
stabilizing the polymer particles during dispersion synthesis. While
low concentrations of the stabilizer polymer lead to mixed morphology
spherulite particles, higher concentrations lead to a controlled condensation–crystallization
mechanism resulting in spherical particles with crystalline content.
The birefringence characteristics as well as the fluorescence behavior
of the resulting particles can be precisely tuned depending on the
respective morphological phase and the degree of crystallinity
Low-temperature synthesis of titanium oxynitride nanoparticles
The synthesis of transition metal oxynitrides is complicated by extreme reaction conditions such as high temperatures and/or high pressures. Here, we show an unprecedented solution-based synthesis of narrowly dispersed titanium oxynitride nanoparticles of cubic shape and average size of 65 nm. Their synthesis is performed by using titanium tetrafluoride and lithium nitride as precursors alongside trioctylphosphine oxide (TOPO) and cetrimonium bromide (CTAB) as stabilizers at temperatures as low as 250 °C. The obtained nanoparticles are characterized in terms of their shape and optical properties, as well as their crystalline rock-salt structure, as confirmed by XRD and HRTEM analysis. We also determine the composition and nitrogen content of the synthesized particles using XPS and EELS. Finally, we investigate the applicability of our titanium oxynitride nanoparticles by compounding them into carbon fiber electrodes to showcase their applicability in energy storage devices. Electrodes with titanium oxynitride nanoparticles exhibit increased capacity compared to the pure carbon materia
- …