229 research outputs found
Identification of polymorphism in promoter region of growth hormone receptor (GHR) gene and its association with milk related traits in Holstein cows
It is widely accepted that hormones, growth factors and other agents exert their biological effects on target tissues by binding to specific receptors on the plasma membrane. The variability in constituent sequences of growth hormone receptor (GHR) gene is very important because of its major role in mammary gland development. The aim of the present study is to detect polymorphism in promoter region of GHR gene and its association with milk related traits in Holstein cows. Blood samples were randomly collected from 93 Holstein cows, transported to the laboratory and stored at -20°C for further analysis. DNA was extracted using modified salting-out method and a fragment of 836 base pair from promoter region of GHR gene was amplified by a specific primer pairs using polymerase chain reaction (PCR). The PCR products were digested by AluI restriction enzyme and electrophoresed on 2% agarose gel. Result of enzyme digestion for GHR gene, showed allele AluI(-) with the fragment sizes of 14, 75 and 747, and allele AluI(+) with the fragment sizes of 14, 75, 145 and 602 base pairs. Frequency estimation of AluI(-) and AluI(+) alleles were 56 and 44%, respectively, and mean of heterozygosity was 0.49. Statistical analysis showed that cows with AluI(+) allele had significantly higher milk protein and fat percentage at first lactation compared with cows with AluI(-/-), while there was no significant relation between different genotypes and other traits.Keywords: Growth hormone receptor, polymorphism, milk, HolsteinAfrican Journal of Biotechnology Vol. 9(33), pp. 5460-5464, 16 August, 201
Molecular classification of Crohn's disease reveals two clinically relevant subtypes
The clinical presentation and course of Crohn’s disease (CD) is highly variable. We sought to better understand the cellular and molecular mechanisms that guide this heterogeneity, and characterize the cellular processes associated with disease phenotypes
Crohn's Disease Differentially Affects Region-Specific Composition and Aerotolerance Profiles of Mucosally Adherent Bacteria
BACKGROUND: The intestinal microbiota play a key role in the onset, progression, and recurrence of Crohn disease (CD). Most microbiome studies assay fecal material, which does not provide region-specific information on mucosally adherent bacteria that directly interact with host systems. Changes in luminal oxygen have been proposed as a contributor to CD dybiosis. METHODS: The authors generated 16S rRNA data using colonic and ileal mucosal bacteria from patients with CD and without inflammatory bowel disease. We developed profiles reflecting bacterial abundance within defined aerotolerance categories. Bacterial diversity, composition, and aerotolerance profiles were compared across intestinal regions and disease phenotypes. RESULTS: Bacterial diversity decreased in CD in both the ileum and the colon. Aerotolerance profiles significantly differed between intestinal segments in patients without inflammatory bowel disease, although both were dominated by obligate anaerobes, as expected. In CD, high relative levels of obligate anaerobes were maintained in the colon and increased in the ileum. Relative abundances of similar and distinct taxa were altered in colon and ileum. Notably, several obligate anaerobes, such as Bacteroides fragilis, dramatically increased in CD in one or both intestinal segments, although specific increasing taxa varied across patients. Increased abundance of taxa from the Proteobacteria phylum was found only in the ileum. Bacterial diversity was significantly reduced in resected tissues of patients who developed postoperative disease recurrence across 2 independent cohorts, with common lower abundance of bacteria from the Bacteroides, Streptococcus, and Blautia genera. CONCLUSIONS: Mucosally adherent bacteria in the colon and ileum show distinct alterations in CD that provide additional insights not revealed in fecal material
Alterations to chromatin in intestinal macrophages link IL-10 deficiency to inappropriate inflammatory responses
Intestinal macrophages are uniquely programmed to tolerate exposure to bacteria without mounting potent inflammatory responses. The cytokine IL-10 maintains the macrophage anti-inflammatory response such that loss of IL-10 results in chronic intestinal inflammation. To investigate how IL-10-deficiency alters intestinal macrophage programming and bacterial tolerance, we studied changes in chromatin accessibility in response to bacteria in macrophages from two distinct niches, the intestine and bone-marrow, from both wild-type and IL-10-deficient mice. In both bone-marrow-derived and intestinal macrophages, we identified chromatin accessibility changes associated with bacterial exposure and IL-10-deficiency. Surprisingly, IL-10-deficient intestinal macrophages adopted chromatin and gene expression patterns characteristic of an inflammatory response, even in the absence of bacteria. Further, if IL-10 protein was added to cells that had previously been IL-10-deficient, it could not revert the chromatin landscape to a normal state. Our results demonstrate that IL-10 deficiency results in stable chromatin alterations in macrophages, even in the absence of bacteria. This supports a model where IL-10-deficiency leads to chromatin alterations that contribute to a loss of intestinal macrophage tolerance to bacteria, which is a primary initiating event in chronic intestinal inflammation
Decreased Colonic Activin Receptor-Like Kinase 1 Disrupts Epithelial Barrier Integrity in Patients With Crohn's Disease
BACKGROUND & AIMS: Intestinal epithelial cell (IEC) barrier dysfunction is critical to the development of Crohn's disease (CD). However, the mechanism is understudied. We recently reported increased microRNA-31-5p (miR-31-5p) expression in colonic IECs of CD patients, but downstream targets and functional consequences are unknown. METHODS: microRNA-31-5p target genes were identified by integrative analysis of RNA- and small RNA-sequencing data from colonic mucosa and confirmed by quantitative polymerase chain reaction in colonic IECs. Functional characterization of activin receptor-like kinase 1 (ACVRL1 or ALK1) in IECs was performed ex vivo using 2-dimensional cultured human primary colonic IECs. The impact of altered colonic ALK1 signaling in CD for the risk of surgery and endoscopic relapse was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. RESULTS: ALK1 was identified as a target of miR-31-5p in colonic IECs of CD patients and confirmed using a 3'-untranslated region reporter assay. Activation of ALK1 restricted the proliferation of colonic IECs in a 5-ethynyl-2-deoxyuridine proliferation assay and down-regulated the expression of stemness-related genes. Activated ALK1 signaling increased colonic IEC differentiation toward colonocytes. Down-regulated ALK1 signaling was associated with increased stemness and decreased colonocyte-specific marker expression in colonic IECs of CD patients compared with healthy controls. Activation of ALK1 enhanced epithelial barrier integrity in a transepithelial electrical resistance permeability assay. Lower colonic ALK1 expression was identified as an independent risk factor for surgery and was associated with a higher risk of endoscopic relapse in CD patients. CONCLUSIONS: Decreased colonic ALK1 disrupted colonic IEC barrier integrity and was associated with poor clinical outcomes in CD patients
Influenza Virus Non-Structural Protein 1 (NS1) Disrupts Interferon Signaling
Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1) encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections
Polygenic risk scores have high diagnostic capacity in ankylosing spondylitis
We would like to thank all participating subjects with AS and healthy individuals who provided the DNA and clinical information necessary for this study. The TASC study was funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grants P01-052915, R01-AR046208. Funding was also received from the University of Texas Health Science Center at Houston CTSA grant UL1RR02418, Cedars-Sinai GCRC grant MO1-RR00425, Intramural Research Program, NIAMS/NIH, and Rebecca Cooper Foundation (Australia). This study was funded, in part, by Arthritis Research UK (Grants 19536 and 18797), by the Wellcome Trust (grant number 076113), and by the Oxford Comprehensive Biomedical Research Centre ankylosing spondylitis chronic disease cohort (Theme Code: A91202). JZB was funded by a grant from the Zhejiang Provincial Natural Science Foundation of China (LD18H120001LD). The New Zealand data was derived from participants in the Spondyloarthritis Genetics and the Environment Study (SAGE) and was funded by The Health Research Council, New Zealand. HX was funded by the National Natural Science Foundation of China (Grant 81430031) and China Ministry of Science and Technology (973 Program of China 2014CB541800). We acknowledge the Understanding Society: The UK Household Longitudinal Study. This is led by the Institute for Social and Economic Research at the University of Essex and funded by the Economic and Social Research Council. The survey was conducted by NatCen and the genome-wide scan data were analysed and deposited by the Wellcome Trust Sanger Institute. Information on how to access the data can be found on the Understanding Society website https: www.understandingsociety.ac.uk/. French sample collection was performed by the Groupe Française d’Etude Génétique des Spondylarthrites, coordinated by Professor Maxime Breban and funded by the Agence Nationale de Recherche GEMISA grant reference ANR-10-MIDI-0002. We acknowledge and thank the TCRI AS Group for their support in recruiting patients for the study (see below). The authors acknowledge the sharing of data and samples by the BSRBR-AS Register in Aberdeen. Chief Investigator, Prof Gary Macfarlane and Dr. Gareth Jones, Deputy Chief Investigator created the BSRBR-AS study which was commissioned by the British Society for Rheumatology, funded in part by Abbvie, Pfizer and UCB. We are grateful to every patient, past and present staff of the BSRBR-AS register team and to all clinical staff who recruited patients, followed them up and entered data – details here: https://www.abdn.ac.uk/iahs/research/epidemiology/spondyloarthritis.php#panel1011. The QIMR control samples were from parents of adolescent twins collected in the context of the Brisbane Longitudinal Twin Study 1992–2016, support by grants from NHMRC (NGM) and ARC (MJW). We thank Anjali Henders, Lisa Bowdler, Tabatha Goncales for biobank collection and Kerrie McAloney and Scott Gordon for curating samples for this study. MAB is funded by a National Health and Medical Research Council (Australia) Senior Principal Research Fellowship (1024879), and support for this study was received from a National Health and Medical Research Council (Australia) program grant (566938) and project grant (569829), and from the Australian Cancer Research Foundation and Rebecca Cooper Medical Research Foundation. We are also very grateful for the invaluable support received from the National Ankylosing Spondylitis Society (UK) and Spondyloarthritis Association of America in case recruitment. Additional financial and technical support for patient recruitment was provided by the National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit and NIHR Thames Valley Comprehensive Local Research and an unrestricted educational grant from Abbott Laboratories. This research was funded/supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London and/or the NIHR Clinical Research Facility. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.Peer reviewedPublisher PD
- …