157 research outputs found

    Estimating Color-Concept Associations from Image Statistics

    Full text link
    To interpret the meanings of colors in visualizations of categorical information, people must determine how distinct colors correspond to different concepts. This process is easier when assignments between colors and concepts in visualizations match people's expectations, making color palettes semantically interpretable. Efforts have been underway to optimize color palette design for semantic interpretablity, but this requires having good estimates of human color-concept associations. Obtaining these data from humans is costly, which motivates the need for automated methods. We developed and evaluated a new method for automatically estimating color-concept associations in a way that strongly correlates with human ratings. Building on prior studies using Google Images, our approach operates directly on Google Image search results without the need for humans in the loop. Specifically, we evaluated several methods for extracting raw pixel content of the images in order to best estimate color-concept associations obtained from human ratings. The most effective method extracted colors using a combination of cylindrical sectors and color categories in color space. We demonstrate that our approach can accurately estimate average human color-concept associations for different fruits using only a small set of images. The approach also generalizes moderately well to more complicated recycling-related concepts of objects that can appear in any color.Comment: IEEE VIS InfoVis 2019 ACM 2012 CSS: 1) Human-centered computing, Human computer interaction (HCI), Empirical studies in HCI 2) Human-centered computing, Human computer interaction (HCI), HCI design and evaluation methods, Laboratory experiments 3) Human-centered computing, Visualization, Empirical studies in visualizatio

    Evaluation of Low Bone Mineral Mass Using a Combination of Peripheral Bone Mineral Density and Total Body Composition Variables by Neural Network

    Get PDF
    AbstractThe aim of this work was to evaluate low bone mass using the feed-forward neural network (NN) with good accuracy taking into account the forearm and heel bone mineral density (BMD) as well as total body composition variables. A total number of 162 subjects including 88 women (mean ± SD age = 37.7 ± 15.2 years) and 74 men (mean ± SD age=31.3 ± 10.9 years) were studied. In each subject, BMD (g cm-2) at forearm and heel using peripheral dual-energy X-ray absorptiometry (pDXA) and total body composition variables by multifrequency bioelectrical impedance analyzer were measured. The measured forearm BMD was used to estimate femur neck BMD by DXA using the published formula. Based on its T-score value, subjects were classified as normal and low bone mineral mass groups separately. In women, it was found that the forearm BMD was positively correlated with body fat percentage (r=0.327; p<0.001). It was observed that 27% of women and 15% of men were affected by low bone mass. In the NN modelling, the following 10 measured variables were used in men and women separately: i) BMI ((kg/m2); ii) average forearm BMD (g/cm2); iii) average heel BMD (g/cm2); iv) body fat (%); v) muscle mass (kg); vi) visceral fat index; vii) bone mineral mass (kg); viii) total body water, TBW (%); ix) basal metabolic rate, BMR (kCal); and x) metabolic age (years). Analysis of low bone mineral mass evaluation using NN projected an accuracy of 87.5% and 85.1% in women and men population, respectively. With the aid of BMD at peripheral skeletal sites and total body composition variables, low bone mass can be evaluated with good accuracy

    Evidence for MBM_B and MCM_C phases in the morphotropic phase boundary region of (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3 : A Rietveld study

    Full text link
    We present here the results of the room temperature dielectric constant measurements and Rietveld analysis of the powder x-ray diffraction data on (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3(PMN-xxPT) in the composition range 0.20x0.450.20 \leq x \leq 0.45 to show that the morphotropic phase boundary (MPB) region contains two monoclinic phases with space groups Cm (or MBM_B type) and Pm (or MCM_C type) stable in the composition ranges 0.27x0.300.27 \leq x \leq 0.30 and 0.31x0.340.31 \leq x \leq 0.34, respectively. The structure of PMN-xxPT in the composition ranges 0x0 \leq x \leq 0.26, and 0.35x10.35 \leq x \leq1 is found to be rhombohedral (R3m) and tetragonal (P4mm), respectively. These results are compared with the predictions of Vanderbilt & Cohen's theory.Comment: 20 pages, 11 pdf figure

    Low temperature superlattice in monoclinic PZT

    Get PDF
    TEM has shown that the strongly piezoelectric material Pb(Zr0.52Ti0.48)O3 separates into two phases at low temperatures. The majority phase is the monoclinic phase previously found by x-ray diffraction. The minority phase, with a nanoscale coherence length, is a slightly distorted variant of the first resulting from the anti-phase rotation of the oxygen octahedra about [111]. This work clears up a recent controversy about the origin of superlattice peaks in these materials, and supports recent theoretical results predicting the coexistence of ferroelectric and rotational instabilities.Comment: REVTeX4, 4 eps figures embedded. JPG version of figs. 2&4 is also include

    Neutron Diffraction Study of Field Cooling Effects on Relaxor Ferroelectrics Pb[(Zn_{1/3} Nb_{2/3})_{0.92} Ti_{0.08}] O_{3}

    Full text link
    High-temperature (T) and high-electric-field (E) effects on Pb[(Zn_{1/3} Nb_{2/3})_{0.92} Ti_{0.08}]O_3 (PZN-8%PT) were studied comprehensively by neutron diffraction in the ranges 300 <= T <= 550 K and 0 <= E <= 15 kV/cm. We have focused on how phase transitions depend on preceding thermal and electrical sequences. In the field cooling process (FC, E parallel [001] >= 0.5 kV/cm), a successive cubic (C) --> tetragonal (T) --> monoclinic (M_C) transition was observed. In the zero field cooling process (ZFC), however, we have found that the system does not transform to the rhombohedral (R) phase as widely believed, but to a new, unidentified phase, which we call X. X gives a Bragg peak profile similar to that expected for R, but the c-axis is always slightly shorter than the a-axis. As for field effects on the X phase, we found an irreversible X --> M_C transition via another monoclinic phase (M_A) as expected from a previous report [Noheda et al. Phys. Rev. Lett. 86, 3891 (2001)]. At a higher electric field, we confirmed a c-axis jump associated with the field-induced M_C --> T transition, which was observed by strain and x-ray diffraction measurements.Comment: 8 pages, 9 figures, revise

    High pressure phases in highly piezoelectric Pb(Zr0.52Ti0.48)O3

    Get PDF
    Two novel room-temperature phase transitions are observed, via synchrotron x-ray diffraction and Raman spectroscopy, in the Pb(Zr0.52Ti0.48)O3 alloy under hydrostatic pressures up to 16 GPa. A monoclinic (M)-to-rhombohedral (R1) phase transition takes place around 2-3 GPa, while this R1 phase transforms into another rhombohedral phase, R2, at about 6-7 GPa. First-principles calculations assign the R3m and R3c symmetry to R1 and R2, respectively, and reveal that R2 acts as a pressure-induced structural bridge between the polar R3m and a predicted antiferrodistortive R-3c phase.Comment: REVTeX, 4 pages with 3 figures embedded. Figs 1 and 3 in colo

    IL‐17A deficiency mitigates bleomycin‐induced complement activation during lung fibrosis

    Full text link
    Interleukin 17A (IL‐17A) and complement (C′) activation have each been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We have reported that IL‐17A induces epithelial injury via TGF‐β in murine bronchiolitis obliterans; that TGF‐β and the C′ cascade present signaling interactions in mediating epithelial injury; and that the blockade of C′ receptors mitigates lung fibrosis. In the present study, we investigated the role of IL‐17A in regulating C′ in lung fibrosis. Microarray analyses of mRNA isolated from primary normal human small airway epithelial cells indicated that IL‐17A (100 ng/ml; 24 h; n = 5 donor lungs) induces C′ components (C′ factor B, C3, and GPCR kinase isoform 5), cytokines (IL8, ‐6, and ‐1B), and cytokine ligands (CXCL1, ‐2, ‐3, ‐5, ‐6, and ‐16). IL‐17A induces protein and mRNA regulation of C′ components and the synthesis of active C′ 3a (C3a) in normal primary human alveolar type II epithelial cells (AECs). Wild‐type mice subjected to IL‐17A neutralization and IL‐17A knockout (i717a−/−) mice were protected against bleomycin (BLEO)‐induced fibrosis and collagen deposition. Further, BLEO‐injured i17a−/− mice had diminished levels of circulating Krebs Von Den Lungen 6 (alveolar epithelial injury marker), local caspase‐3/7, and local endoplasmic reticular stress‐related genes. BLEO‐induced local C′ activation [C3a, C5a, and terminal C′ complex (C5b‐9)] was attenuated in il17a−/− mice, and IL‐17A neutralization prevented the loss of epithelial C′ inhibitors (C′ receptor‐1 related isoform Y and decay accelerating factor), and an increase in local TUNEL levels. RNAi‐mediated gene silencing of il17a in fibrotic mice arrested the progression of lung fibrosis, attenuated cellular apoptosis (caspase‐3/7) and lung deposition of collagen and C′ (C5b‐9). Compared to normals, plasma from IPF patients showed significantly higher hemolytic activity. Our findings demonstrate that limiting complement activation by neutralizing IL‐17A is a potential mechanism in ameliorating lung fibrosis.—Cipolla, E., Fisher, A. J., Gu, H., Mickler, E. A., Agarwal, M., Wilke, C. A., Kim, K. K., Moore, B. B., Vittal, R. IL‐17A deficiency mitigates bleomycin‐induced complement activation during lung fibrosis. FASEB J. 31, 5543–5556 (2017). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154482/1/fsb2fj201700289r-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154482/2/fsb2fj201700289r.pd

    Diasporic virginities: social representations of virginity and identity formation amongst British arab muslim women

    Get PDF
    This study compares how practising and non-practising British Arab Muslim women position themselves in relation to representations of virginity. Overall, in our qualitative study, we found that representations of culture and religion influenced social practices and social beliefs in different ways: non-practising Muslim women felt bound by culture to remain virgins, while practising Muslim women saw it as a religious obligation but were still governed by culture regarding the consequences of engaging in premarital sex. Interestingly, some practising Muslim participants used Mut’a (a form of temporary ‘marriage’) to justify premarital sex. This, however, did not diminish the importance of virginity in their understanding and identification as Arab women. In fact, this study found that virginity, for the British Arabs interviewed, embodied a sense of ‘Arabness’ in British society. Positioning themselves as virgins went beyond simply honour; it was a significant cultural symbol that secured their sense of cultural identity. In fact this cultural identity was often so powerful that it overrode their Islamic identities, prescribing their behaviour even if religion was seen as more ‘forgiving’

    Making a Step Forward Towards Urban Resilience. The Contribution of Digital Innovation

    Get PDF
    Starting from 'wicked problem' theory as the landmark for framing disaster events in terms of policy issue for city governments, this paper highlights the contribution provided by Big Data analytics and digital innovation in dealing with disaster risks. The research aims at answering the following question: what is the role that 'smart technologies' play in strengthening urban resilience to disaster risks

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment
    corecore