25 research outputs found

    Influence de la chimie des joints de grains sur les propriétés des cellules photovoltaïques Cu(In,Ga)Se 2

    Get PDF
    With efficiency more than 21%, polycrystalline Cu(In,Ga)Se2 (CIGSe) semiconductors present maximum efficiency among thin film solar cells, making them a promising material to develop solar cell modules. Most efficient CIGSe cells produced till date are Ga poor cells (≈7.5% Ga) having band gap (Eg) =1.2 eV, however cells with optimum band gap (according to solar spectrum) 1.4 eV (≈18% Ga) presented much lower efficiency. This degraded performance of wide band gap CIGSe lead to scientific debates for many years suggesting various theories behind its decline in performance. Beneficial properties of Grain boundaries (GBs) are one of the main reasons for high efficiency of CIGSe and modifications in GBs could be the reason for hindered performance of Ga rich cells. In order to detect changes in chemistry of GBs, a technique able to resolve materials at atomic scale is employed in this research, known as atom probe tomography (APT). Exploring GB chemistry, we found that Ga poor cells always exhibit Cu deprived GBs which are known beneficial for cells due to their hole barrier properties, however Cu enriched GBs emerges for Ga concentration higher than 7.5%. This composition surprisingly coincides with decline in CIGSe performance and further increase in Ga concentration results in increase in Cu enriched GBs followed by degraded CIGSe performance. This suggests modifications in GBs can alter device’s performance, hence to retain GB properties some propositions and experiments are illustrated in the end.Avec une efficacitĂ© de plus de 21%, le matĂ©riau polycristallin semiconducteur Cu(In,Ga)Se2(CIGSe) prĂ©sente le maximum d’efficacitĂ© pour les cellules solaires dites Ă  couches minces. Les cellules CIGSe les plus efficaces produites jusqu'Ă  ce jour sont des cellules pauvres en Ga (≈7.5% Ga) et ayant une largeur de bande interdite (Eg) de 1,2 eV. Cependant, les cellules avec une largeur de bande optimale d’ 1,4 eV (≈18% Ga) prĂ©sentent une efficacitĂ© beaucoup plus faible. Cette dĂ©gradation des performances des cellules Ă  large bande interdite CIGSe conduit Ă  des dĂ©bats scientifiques depuis de nombreuses annĂ©es ayant menĂ© Ă  diverses thĂ©ories pour expliquer le dĂ©clin des performances de ces cellules avec l’augmentation de Ga. Les propriĂ©tĂ©s bĂ©nĂ©fiques des joints de grains (GB) sont l'une des principales raisons de rendement Ă©levĂ© du CIGSe et les modifications de la chimie des GB pourraient ĂȘtre la raison de la performance limitĂ©e des cellules riches en Ga. Afin de dĂ©tecter des changements dans la chimie des GB, une technique capable d’imager des matĂ©riaux Ă  l'Ă©chelle atomique est employĂ©e dans ce travail : la sonde atomique tomographique (APT). L’exploration de la chimie des GB nous a permis de constater que les cellules pauvres en Ga prĂ©sentent toujours une dĂ©plĂ©tion en Cu. Cette chimie semble bĂ©nĂ©fique pour les cellules en raison de leurs car les GB agissent alors comme barriĂšre pour trous, Ă©vitant ainsi les recombinaisons aux joints de grain. Cependant pour des concentrations de Ga supĂ©rieures Ă  7,5%, un enrichissement en Cu est observĂ©. Cette composition coĂŻncide Ă©tonnamment avec la baisse de la performance des cellules CIGSe. Cela suggĂšre que des modifications dans les joints de grains peuvent altĂ©rer les performances de l'appareil. Donc, pour amĂ©liorer les propriĂ©tĂ©s des joints de grains, de nouvelles pistes sont envisagĂ©es Ă  la fin du document

    Influence de la chimie des joints de grains sur les propriétés des cellules photovoltaïques Cu(In,Ga)Se 2

    No full text
    With efficiency more than 21%, polycrystalline Cu(In,Ga)Se2 (CIGSe) semiconductors present maximum efficiency among thin film solar cells, making them a promising material to develop solar cell modules. Most efficient CIGSe cells produced till date are Ga poor cells (≈7.5% Ga) having band gap (Eg) =1.2 eV, however cells with optimum band gap (according to solar spectrum) 1.4 eV (≈18% Ga) presented much lower efficiency. This degraded performance of wide band gap CIGSe lead to scientific debates for many years suggesting various theories behind its decline in performance. Beneficial properties of Grain boundaries (GBs) are one of the main reasons for high efficiency of CIGSe and modifications in GBs could be the reason for hindered performance of Ga rich cells. In order to detect changes in chemistry of GBs, a technique able to resolve materials at atomic scale is employed in this research, known as atom probe tomography (APT). Exploring GB chemistry, we found that Ga poor cells always exhibit Cu deprived GBs which are known beneficial for cells due to their hole barrier properties, however Cu enriched GBs emerges for Ga concentration higher than 7.5%. This composition surprisingly coincides with decline in CIGSe performance and further increase in Ga concentration results in increase in Cu enriched GBs followed by degraded CIGSe performance. This suggests modifications in GBs can alter device’s performance, hence to retain GB properties some propositions and experiments are illustrated in the end.Avec une efficacitĂ© de plus de 21%, le matĂ©riau polycristallin semiconducteur Cu(In,Ga)Se2(CIGSe) prĂ©sente le maximum d’efficacitĂ© pour les cellules solaires dites Ă  couches minces. Les cellules CIGSe les plus efficaces produites jusqu'Ă  ce jour sont des cellules pauvres en Ga (≈7.5% Ga) et ayant une largeur de bande interdite (Eg) de 1,2 eV. Cependant, les cellules avec une largeur de bande optimale d’ 1,4 eV (≈18% Ga) prĂ©sentent une efficacitĂ© beaucoup plus faible. Cette dĂ©gradation des performances des cellules Ă  large bande interdite CIGSe conduit Ă  des dĂ©bats scientifiques depuis de nombreuses annĂ©es ayant menĂ© Ă  diverses thĂ©ories pour expliquer le dĂ©clin des performances de ces cellules avec l’augmentation de Ga. Les propriĂ©tĂ©s bĂ©nĂ©fiques des joints de grains (GB) sont l'une des principales raisons de rendement Ă©levĂ© du CIGSe et les modifications de la chimie des GB pourraient ĂȘtre la raison de la performance limitĂ©e des cellules riches en Ga. Afin de dĂ©tecter des changements dans la chimie des GB, une technique capable d’imager des matĂ©riaux Ă  l'Ă©chelle atomique est employĂ©e dans ce travail : la sonde atomique tomographique (APT). L’exploration de la chimie des GB nous a permis de constater que les cellules pauvres en Ga prĂ©sentent toujours une dĂ©plĂ©tion en Cu. Cette chimie semble bĂ©nĂ©fique pour les cellules en raison de leurs car les GB agissent alors comme barriĂšre pour trous, Ă©vitant ainsi les recombinaisons aux joints de grain. Cependant pour des concentrations de Ga supĂ©rieures Ă  7,5%, un enrichissement en Cu est observĂ©. Cette composition coĂŻncide Ă©tonnamment avec la baisse de la performance des cellules CIGSe. Cela suggĂšre que des modifications dans les joints de grains peuvent altĂ©rer les performances de l'appareil. Donc, pour amĂ©liorer les propriĂ©tĂ©s des joints de grains, de nouvelles pistes sont envisagĂ©es Ă  la fin du document

    Plasmonic nanowires arranged in Fibonacci number chain: Excitation angle-dependent optical properties

    No full text
    Herein we numerically study the excitation angle-dependant far-field and near-field optical properties of vertical plasmonic nanowires arranged in an unconventional linear geometry: Fibonacci number chain. The first five numbers in the Fibonacci series (1, 1, 2, 3, 5) were mapped to the size of gold nanowires, and arranged in a linear chain to study their optical interactions, and compared them to conventional chain of vertical gold nanowires. By harnessing the radiative and evanescent coupling regimes in the geometry, we found a systematic variation in the far-field extinction and near-field confinement in the geometries. Our simulation studies revealed enhanced backscattered intensity in the far-field radiation pattern at excitation angles along the chain-length of Fibonacci geometry, which was otherwise absent for conventional chain of plasmonic nanowires. Such angular reconfiguration of optical fields in unconventional linear geometries can be harnessed for tunable on-chip plasmonics

    Influence of boron clustering on the emitter quality of implanted silicon solar cells: An atom probe tomography study

    No full text
    International audienceThe use of ion implantation doping instead of the standard gaseous diffusion is a promising way to simplify the fabrication process of silicon solar cells. However, difficulties to form high-quality boron (B) implanted emitters are encountered when implantation doses suitable for the emitter formation are used. This is due to a more or less complete activation of Boron after thermal annealing. To have a better insight into the actual state of the B distributions, we analyze three different B emitters prepared on textured Si wafers: (1) a BCl3 diffused emitter and two B implanted emitters (fixed dose) annealed at (2) 950°C and at (3) 1050°C (less than an hour). Our investigations are in particular based on atom probe tomography, a technique able to explore 3D atomic distribution inside a material at nanometer scale. Atom probe tomography is employed here to characterize B atomic distribution inside textured Si solar cell emitters and to quantify clustering of B atoms. Here, we show that implanted emitters annealed at 950 °C present maximum clusters due to poor solubility at lower temperature and also highest emitter saturation current density (J0e = 1000 fA/cm2). Increasing the annealing temperature results in greatly improved J0e (131 fA/cm2) due to higher solubility and a consequently lower number of clusters. BCl3 diffused emitters do not contain any B clusters and presented the best emitter quality. From our results, we conclude that clustering of B atoms is the main reason behind higher J0e in the implanted boron emitters and hence degraded emitter quality
    corecore