1,297 research outputs found

    Quantum Random Walks do not need a Coin Toss

    Full text link
    Classical randomized algorithms use a coin toss instruction to explore different evolutionary branches of a problem. Quantum algorithms, on the other hand, can explore multiple evolutionary branches by mere superposition of states. Discrete quantum random walks, studied in the literature, have nonetheless used both superposition and a quantum coin toss instruction. This is not necessary, and a discrete quantum random walk without a quantum coin toss instruction is defined and analyzed here. Our construction eliminates quantum entanglement from the algorithm, and the results match those obtained with a quantum coin toss instruction.Comment: 6 pages, 4 figures, RevTeX (v2) Expanded to include relation to quantum walk with a coin. Connection with Dirac equation pointed out. Version to be published in Phys. Rev.

    Control of plume interference effects on axisymmetric afterbodies

    Get PDF
    Plume interference effects on the axisymmetric flowfields around powered missiles are investigated using computational techniques. The study is mainly to understand the physics of the plume-induced shock and separation particularly at high plume to exit pressure ratios with and without shock-turbulent boundary layer control methods

    A structure in the early Universe at z 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology

    Get PDF
    A Large Quasar Group (LQG) of particularly large size and high membership has been identified in the DR7QSO catalogue of the Sloan Digital Sky Survey. It has characteristic size (volume^1/3) ~ 500 Mpc (proper size, present epoch), longest dimension ~ 1240 Mpc, membership of 73 quasars, and mean redshift = 1.27. In terms of both size and membership it is the most extreme LQG found in the DR7QSO catalogue for the redshift range 1.0 = 1.28, which is itself one of the more extreme examples. Their boundaries approach to within ~ 2 deg (~ 140 Mpc projected). This new, huge LQG appears to be the largest structure currently known in the early universe. Its size suggests incompatibility with the Yadav et al. scale of homogeneity for the concordance cosmology, and thus challenges the assumption of the cosmological principle

    Search on a Hypercubic Lattice through a Quantum Random Walk: II. d=2

    Full text link
    We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretised according to the staggered lattice fermion formalism. d=2d=2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behaviour. As a result, the construction used in our accompanying article \cite{dgt2search} provides an O(NlogN)O(\sqrt{N}\log N) algorithm, which is not optimal. The scaling behaviour can be improved to O(NlogN)O(\sqrt{N\log N}) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi \cite{tulsi}. We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimise the proportionality constants of the scaling behaviour of the algorithm by numerically tuning the parameters.Comment: Revtex4, 5 pages (v2) Introduction and references expanded. Published versio

    Columnar phases exhibited by some polycatenar ligands and a few related metal complexes

    Get PDF
    The synthesis and characterization of some polycatenar ligands which exhibit hexagonal columnar and cubic phases are reported. A pentacatenar with only four phenyl rings in the core and exhibiting a mesophase is also reported. A few copper (II) and palladium (II) complexes have been synthesized using these ligands and the mesomorphic properties exhibited by them are described. The hexagonal columnar phase exhibited by some of the complexes can be cooled down to room temperature. The mesophases have been characterized using a combination of polarized light microscopy, differential scanning calorimetry and X-ray diffraction methods

    Enhancement of thrust reverser cascade performance using aerodynamic and structural integration

    Get PDF
    This paper focuses on the design of a cascade within a cold stream thrust reverser during the early, conceptual stage of the product development process. A reliable procedure is developed for the exchange of geometric and load data between a two dimensional aerodynamic model and a three dimensional structural model. Aerodynamic and structural simulations are carried out using realistic operating conditions, for three different design configurations with a view to minimising weight for equivalent or improved aerodynamic and structural performance. For normal operational conditions the simulations show that total reverse thrust is unaffected when the performance of the deformed vanes is compared to the un-deformed case. This shows that for the conditions tested, the minimal deformation of the cascade vanes has no significant affect on aerodynamic efficiency and that there is scope for reducing the weight of the cascade. The pressure distribution through a two dimensional thrust reverser section is determined for two additional cascade vane configurations and it is shown that with a small decrease in total reverse thrust, it is possible to reduce weight and eliminate supersonic flow regimes through the nacelle section. By increasing vane sections in high pressure areas and decreasing sections in low pressure areas the structural performance of the cascade vanes in the weight reduced designs, is improved with significantly reduced levels of vane displacement and stress

    Structures of some surfactant-polyelectrolyte complexes

    Get PDF
    Structures of complexes formed in aqueous solutions by some anionic polyelectrolytes (double and single stranded (ds and ss) DNA, poly(vinyl sulfonate) (PVS), and poly(styrene sulfonate) (PSS)) with a cationic surfactant system consisting of cetyltrimethylammonium bromide (CTAB) and sodium 3-hydroxy-2-naphthoate (SHN) have been determined using small angle X-ray diffraction. All complexes are found to have a two-dimensional (2-D) hexagonal structure at low SHN concentrations. Analysis of the diffraction data shows that the ds DNA-CTAB complex has an intercalated structure, with each DNA strand surrounded by three cylindrical micelles. On increasing SHN concentration, DNA-CTAB-SHN complexes exhibit a hexagonal-to-lamellar transition, whereas PVS complexes show a hexagonal → centered rectangular → lamellar transition. PSS complexes show yet another sequence of structures. These results indicate the significant influence of the chemical nature of the polyelectrolyte on the structure of the complexes

    Reentrant phase transitions of DNA-surfactant complexes

    Get PDF
    Complexes of double-stranded DNA with the cationic surfactant cetyltrimethylammonium bromide have been studied using small angle X-ray diffraction at varying concentrations of DNA and the cosurfactant hexanol. At low DNA concentrations, an intercalated hexagonal (HIc)→lamellar (Lαc)→inverted hexagonal (HIIc) transformation is found on increasing hexanol content. The HIIc structure is converted into Lαc on adding more DNA. Further increase in hexanol content leads to a phase separation in the surfactant solution, and a reentrant Lαc→HIIc→Lαc transition is observed as DNA concentration is increased. Such structural transformations of DNA-surfactant complexes, driven by DNA concentration, have not been reported until now

    SARAS 2: A Spectral Radiometer for probing Cosmic Dawn and the Epoch of Reionization through detection of the global 21 cm signal

    Full text link
    The global 21 cm signal from Cosmic Dawn (CD) and the Epoch of Reionization (EoR), at redshifts z630z \sim 6-30, probes the nature of first sources of radiation as well as physics of the Inter-Galactic Medium (IGM). Given that the signal is predicted to be extremely weak, of wide fractional bandwidth, and lies in a frequency range that is dominated by Galactic and Extragalactic foregrounds as well as Radio Frequency Interference, detection of the signal is a daunting task. Critical to the experiment is the manner in which the sky signal is represented through the instrument. It is of utmost importance to design a system whose spectral bandpass and additive spurious can be well calibrated and any calibration residual does not mimic the signal. SARAS is an ongoing experiment that aims to detect the global 21 cm signal. Here we present the design philosophy of the SARAS 2 system and discuss its performance and limitations based on laboratory and field measurements. Laboratory tests with the antenna replaced with a variety of terminations, including a network model for the antenna impedance, show that the gain calibration and modeling of internal additives leave no residuals with Fourier amplitudes exceeding 2~mK, or residual Gaussians of 25 MHz width with amplitudes exceeding 2~mK. Thus, even accounting for reflection and radiation efficiency losses in the antenna, the SARAS~2 system is capable of detection of complex 21-cm profiles at the level predicted by currently favoured models for thermal baryon evolution.Comment: 44 pages, 17 figures; comments and suggestions are welcom
    corecore